Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Ultrason Sonochem ; 101: 106702, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38041881

ABSTRACT

Colorectal cancer (CRC) is the most common malignancy and the third primary cause of cancer-related mortalities caused by unhealthy diet, hectic lifestyle, and genetic damage. People aged ≥ 50 are more at risk for CRC. Nowadays, bioactive compounds from plants have been widely studied in preventing CRC because of their anticancer and antioxidant properties. Herein, ultrasound-assisted extraction (UAE) was used to extract the bioactive compounds of Pluchea indica (L.) leaves. The resultant total phenolic content (TPC) and total flavonoid content (TFC) of P. indica (L.) leaves were analyzed using a response surface methodology (RSM). The central composite design was implemented to evaluate the amplitude (10 %-70 %) and treatment time (2-10 min) on both responses, i.e., TPC and TFC of P. indica (L.) leaves. The optimum UAE conditions were observed 40 % amplitude and 6 min of treatment, where the TPC and TFC were 3.26 ±â€¯0.00 mg GAE/g d.w. and 67.58 ±â€¯1.46 mg QE/g d.w., respectively. The optimum P. indica (L.) leaf extract was then screened for its cytotoxicity on the HT-29 colorectal cancer cell line. This extract had strong cytotoxicity with a half-maximal inhibitory concentration value (IC50) of 12 µg/mL. The phytochemical screening of bioactive compounds revealed that the optimal P. indica (L.) leaf extract contains flavonoids, namely, kaempferol 3-[2''',3''',5'''-triacetyl]-alpha-L-arabinofuranosyl-(1->6)-glucoside, myricetin 3-glucoside-7-galactoside, quercetin 3-(3''-sulfatoglucoside), and kaempferol 7,4'-dimethyl ether 3-O-sulfate, which could be good sources for promising anticancer agents. This study employs the RSM approach to utilize UAE for bioactive compounds extraction of P. indica (L.) leaves, identified the specific compounds present in the optimized extract and revealed its potential in preventing CRC.


Subject(s)
Colorectal Neoplasms , Plant Extracts , Humans , Plant Extracts/pharmacology , Plant Extracts/chemistry , Kaempferols , Phenols/pharmacology , Phenols/chemistry , Antioxidants/chemistry , Cell Line , Glucosides , Colorectal Neoplasms/drug therapy
2.
Molecules ; 25(11)2020 Jun 04.
Article in English | MEDLINE | ID: mdl-32512700

ABSTRACT

Christia vespertilionis, commonly known as 'Daun Rerama', has recently garnered attention from numerous sources in Malaysia as an alternative treatment. Its herbal decoction was believed to show anti-inflammatory and anti-cancer effects. The present study investigated the cytotoxicity of the extract of root and leaf of C. vespertilionis. The plant parts were successively extracted using the solvent maceration method. The most active extract was further fractionated to afford F1-F8. The cytotoxic effects were determined using MTT assay against human breast carcinoma cell lines (MCF-7 and MDA-MB-231). The total phenolic content (TPC) of the extracts were determined. The antioxidant properties of the extract were also studied using DPPH and ß-carotene bleaching assays. The ethyl acetate root extract demonstrated selective cytotoxicity especially against MDA-MB-231 with the highest TPC and antioxidant properties compared to others (p < 0.05). The TPC and antioxidant results suggest the contribution of phenolic compounds toward its antioxidant strength leading to significant cytotoxicity. F3 showed potent cytotoxic effects while F4 showed better antioxidative strength compared to others (p < 0.05). Qualitative phytochemical screening of the most active fraction, F3, suggested the presence of flavonoids, coumarins and quinones to be responsible toward the cytotoxicity. The study showed the root extracts of C. vespertilionis to possess notable anti-breast cancer effects.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Breast Neoplasms/pathology , Fabaceae/chemistry , Phytochemicals/pharmacology , Plant Extracts/pharmacology , Plant Leaves/chemistry , Plant Roots/chemistry , Antioxidants/pharmacology , Apoptosis , Breast Neoplasms/drug therapy , Cell Proliferation , Female , Free Radical Scavengers/pharmacology , Humans , Tumor Cells, Cultured
3.
RSC Adv ; 9(32): 18359-18370, 2019 Jun 10.
Article in English | MEDLINE | ID: mdl-35515266

ABSTRACT

Copper complexes have the potential to be developed as targeted therapy for cancer because cancer cells take up larger amounts of copper than normal cells. Copper complex Cu(SBCM)2 has been reported to induce cell cycle arrest and apoptosis towards triple-negative breast cancer cells. Nevertheless, its effect towards other breast cancer subtypes has not been explored. Therefore, the present study was conducted to investigate the effect of Cu(SBCM)2 towards oestrogen-receptor positive MCF-7 breast cancer cells. Growth inhibition of Cu(SBCM)2 towards MCF-7 and human non-cancerous MCF-10A breast cells was determined by MTT assay. Morphological changes of Cu(SBCM)2-treated-MCF-7 cells were observed under an inverted microscope. Annexin V/PI apoptosis assay and cell cycle analysis were evaluated by flow cytometry. The expression of wild-type p53 protein was evaluated by Western blot analysis. The intracellular ROS levels of MCF-7 treated with Cu(SBCM)2 were detected using DCFH-DA under a fluorescence microscope. The cells were then co-treated with Cu(SBCM)2 and antioxidants to evaluate the involvement of ROS in the cytotoxicity of Cu(SBCM)2. Docking studies of Cu(SBCM)2 with DNA, DNA topoisomerase I, and human ribonucleotide reductase were also performed. The growth of MCF-7 cells was inhibited by Cu(SBCM)2 in a dose-dependent manner with less toxicity towards MCF-10A cells. It was found that Cu(SBCM)2 induced G2/M cell cycle arrest and apoptosis in MCF-7 cells, possibly via a p53 pathway. Induction of intracellular ROS was not detected in MCF-7 cells. Interestingly, antioxidants enhance the cytotoxicity of Cu(SBCM)2 towards MCF-7 cells. DNA topoisomerase I may be the most likely target that accounts for the cytotoxicity of Cu(SBCM)2.

4.
Article in English | MEDLINE | ID: mdl-30186351

ABSTRACT

Thymoquinone (TQ), a bioactive compound found in Nigella sativa, cannot be orally consumed due to its lipophilicity. In order to overcome this low bioavailability, TQ is loaded into a colloidal drug carrier known as a nanostructured lipid carrier (NLC). This study aims to determine the antiproliferative effects of TQ and TQ-NLC on liver cancer cells integrated with the hepatitis B genome, Hep3B. The Hep3B was treated with TQ or TQ-NLC for 24, 48, and 72 hours via MTT assay. The results confirm that TQ or TQ-NLC inhibited the growth of Hep3B at IC50 <16.7 µM for 72 hours. TQ was also found to induce cell cycle arrest at the G1 checkpoint while TQ-NLC induced non-phase-specific cell cycle arrest. Further analysis using Annexin V staining confirmed the apoptotic induction of TQ or TQ-NLC via activation of caspases-3/7. In ROS management, TQ acted as a prooxidant (increased the level of ROS), while TQ-NLC acted as an antioxidant (reduced the level of ROS). Molecular analysis demonstrated that the GSH system and the Nrf2/Keap1 signaling pathway in Hep3B influenced the differential responses of the cells towards TQ or TQ-NLC. Hence, this study demonstrated that TQ and TQ-NLC have in vitro anticancer effects on the Hep3B.

5.
Nanomedicine (Lond) ; 13(13): 1567-1582, 2018 07.
Article in English | MEDLINE | ID: mdl-30028248

ABSTRACT

AIM: To investigate the enhancement of anticancer activity of thymoquinone (TQ) by the use of nanostructured lipid carrier (NLC) in 4T1 tumor-bearing female BALB/c mice. MATERIAL & METHODS: TQ was incorporated into NLC (TQNLC) by using high pressure homogenization. TQNLC and TQ were orally administered to the mice. RESULTS & CONCLUSION: TQNLC and TQ are potential chemotherapeutic drugs as they exhibited anticancer activity. The use of NLC as a carrier has enhanced the therapeutic property of TQ by increasing the survival rate of mice. The antimetastasis effect of TQNLC and TQ to the lungs was evidence by downregulation of MMP-2. TQNLC and TQ induced apoptosis via modulation of Bcl-2 and caspase-8 in the intrinsic apoptotic pathway.


Subject(s)
Benzoquinones/administration & dosage , Cell Proliferation/drug effects , Lipids/administration & dosage , Mammary Neoplasms, Animal/drug therapy , Allografts/drug effects , Animals , Apoptosis/drug effects , Benzoquinones/chemistry , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Caspase 8/genetics , Cell Line, Tumor , Female , Gene Expression Regulation, Neoplastic/drug effects , Humans , Lipids/chemistry , Mammary Neoplasms, Animal/genetics , Mammary Neoplasms, Animal/pathology , Mice , Nanostructures/administration & dosage , Nanostructures/chemistry , Proto-Oncogene Proteins c-bcl-2/genetics , Signal Transduction/drug effects
6.
Biometals ; 31(4): 505-515, 2018 08.
Article in English | MEDLINE | ID: mdl-29623473

ABSTRACT

Copper complexes have been widely studied for the anti-tumour application as cancer cells are reported to take up greater amounts of copper than normal cells. Preliminary study revealed that the newly synthesised copper complex [Cu(SBCM)2] displayed marked anti-proliferative towards triple-negative MDA-MB-231 breast cancer cells. Therefore, Cu(SBCM)2 has great potential to be developed as an agent for the management of breast cancer. The present study was carried out to investigate the mode of cell death induced by Cu(SBCM)2 towards MDA-MB-231 breast cancer cells. The inhibitory and morphological changes of MDA-MB-231 cells treated with Cu(SBCM)2 was determined by using MTT assay and inverted light microscope, respectively. The safety profile of Cu(SBCM)2 was also evaluated towards human dermal fibroblast (HDF) normal cells. Confirmation of apoptosis and cell cycle arrest were determined by flow cytometry analysis. The expression of p53, Bax, Bcl-2 and MMP2 protein were detected with western blot analysis. Cu(SBCM)2 significantly inhibited the growth of MDA-MB-231 cells in a dose-dependent manner with GI50 18.7 ± 3.06 µM. Indeed, Cu(SBCM)2 was less toxic towards HDF normal cells with GI50 31.8 ± 4.0 µM. Morphological study revealed that Cu(SBCM)2-treated MDA-MB-231 cells experienced cellular shrinkage, membrane blebbing, chromatin condensation and formation of apoptotic bodies, suggesting that Cu(SBCM)2 induced apoptosis in the cells, which was confirmed by Annexin-V/PI flow cytometry analysis. It was also found that Cu(SBCM)2 induced G2/M phase cell cycle arrest towards MDA-MB-231 cells. The induction of apoptosis and cell cycle arrest in the present study is possibly due to the down-regulation of the mutant p53 and MMP2 protein. In conclusion, Cu(SBCM)2 can be developed as a targeted therapy for the treatment of triple-negative breast cancer.


Subject(s)
Breast Neoplasms/drug therapy , Coordination Complexes/chemistry , Copper/chemistry , Apoptosis/drug effects , Breast Neoplasms/chemistry , Breast Neoplasms/pathology , Cell Cycle Checkpoints/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Coordination Complexes/pharmacology , Copper/pharmacology , Coumarins/chemistry , Coumarins/pharmacology , Female , Fibroblasts/drug effects , Humans , MCF-7 Cells , Thiocarbamates/chemistry , Thiocarbamates/pharmacology
7.
Artif Cells Nanomed Biotechnol ; 46(sup2): 131-139, 2018.
Article in English | MEDLINE | ID: mdl-29561182

ABSTRACT

PURPOSE: The purpose of this study was to investigate apoptotic activity of silver nanoparticle Clinacanthus nutans (AgNps-CN) towards HSC-4 cell lines (oral squamous cell carcinoma cell lines). METHODS: Methods involved were MTT assay (cytotoxic activity), morphological cells analysis, flow cytometry and cell cycle analysis and western blot. RESULTS: MTT assay revealed IC50 concentration was 1.61 µg/mL, 3T3-L1 cell lines were used to determine whether AgNps-CN is cytotoxic to normal cells. At the highest concentration (3 µg/mL), no cytotoxic activity has been observed. Flow cytometry assay revealed AgNps-CN caused apoptosis effects towards HSC-4 cell lines with significant changes were observed at G1 phase when compared with untreated cells. Morphological cells analysis revealed that most of the cells exhibit apoptosis characteristics rather than necrosis. Protein study revealed that ratio of Bax/Bcl-2 increased mainly due to down-regulation of Bcl-2 expression. CONCLUSION: AgNps-CN have shown potential in inhibiting HSC-4 cell lines. IC50 was low compared to few studies involving biosynthesized of silver nanoparticles. Apoptosis effects were shown towards HSC-4 cell lines by the increased in Bax/Bcl-2 protein ratio. Further study such as PCR or in vivo studies are required.


Subject(s)
Acanthaceae/chemistry , Apoptosis/drug effects , Carcinoma, Squamous Cell/pathology , Metal Nanoparticles/chemistry , Mouth Neoplasms/pathology , Plant Leaves/chemistry , Silver/pharmacology , 3T3 Cells , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Cell Cycle Checkpoints/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Humans , Mice , Nanotechnology , Plant Extracts/chemistry , Silver/chemistry
8.
Int J Nanomedicine ; 12: 2373-2384, 2017.
Article in English | MEDLINE | ID: mdl-28392694

ABSTRACT

Breast cancer is the most common malignancy worldwide, especially among women, with substantial after-treatment effects. The survival rates of breast cancer have decreased over the years even with the existence of various therapeutic strategies, specifically, chemotherapy. Clinical drugs administered for breast cancer appear to be non-targeting to specific cancer sites leading to severe side effects and potentially harming healthy cells instead of just killing cancer cells. This leads to the need for designing a targeted drug delivery system. Nanomaterials, both organic and inorganic, are potential drug nanocarriers with the ability of targeting, imaging and tracking. Various types of nanomaterials have been actively researched together with their drug conjugate. In this review, we focus on selected nanomaterials, namely solid-lipid, liposomal, polymeric, magnetic nanoparticles, quantum dots, and carbon nanotubes and their drug conjugates, for breast cancer studies. Their advantages, disadvantages and previously conducted studies were highlighted.


Subject(s)
Breast Neoplasms/drug therapy , Molecular Targeted Therapy , Nanomedicine/trends , Nanostructures/therapeutic use , Drug Delivery Systems , Female , Humans , Pharmaceutical Preparations
9.
Biomed Res Int ; 2017: 9517287, 2017.
Article in English | MEDLINE | ID: mdl-28116312

ABSTRACT

Chemoprevention has become an important area in cancer research due to low success rate of current therapeutic modalities. Diet plays a vital role in the etiology of cancer. This research was carried out to study the chemopreventive properties of germinated rough rice (GRR) crude extract in Sprague-Dawley rats induced with azoxymethane. Germination of rough rice causes significant changes in several chemical compositions of presently bioactive compounds. These compounds may prevent or postpone the inception of cancer. Fifty male Sprague-Dawley rats (6 weeks of age) were randomly divided into 5 groups which were (G1) induced with azoxymethane (AOM) and not given GRR (positive control), (G2) induced with AOM and given 2000 mg/kg GRR, (G3) induced with AOM and given 1000 mg/kg GRR, (G4) induced with AOM and given 500 mg/kg GRR, and (G5) not induced with AOM and not given GRR crude extract (negative control). To induce colon cancer, rats received two IP injections of AOM in saline (15 mg/kg) for two subsequent weeks. Organs were removed and weighed. Aberrant crypt foci (ACF) were evaluated histopathologically. ß-Catenin expressions were determined by Western blot. Treatment with 2000 mg/kg GRR crude extract not only resulted in the greatest reduction in the size and number of ACF but also displayed the highest percentage of nondysplastic ACF. Treatment with 2000 mg/kg GRR also gave the lowest level of expression in ß-catenin. Thus, GRR could be a promising dietary supplement for prevention of CRC.


Subject(s)
Aberrant Crypt Foci/chemically induced , Anticarcinogenic Agents/therapeutic use , Azoxymethane/chemistry , Oryza/chemistry , Plant Extracts/chemistry , Animals , Carcinogens , Colon/drug effects , Colonic Neoplasms/chemically induced , Colonic Neoplasms/drug therapy , Diet , Dietary Supplements , Inhibitory Concentration 50 , Male , Mutation , Powders , Rats , Rats, Sprague-Dawley , beta Catenin/metabolism
10.
Int J Nanomedicine ; 11: 5905-5915, 2016.
Article in English | MEDLINE | ID: mdl-27877037

ABSTRACT

BACKGROUND: Thymoquinone (TQ), the predominant active lipophilic component in Nigella sativa seed oil, has a variety of pharmacological properties such as anticancer activities. However, translation of TQ to clinical phase is still not possible due to its hydrophobic properties. This problem can be solved by encapsulating it in nanoformulations to enhance its pharmacological properties. In our previous study, TQ has been successfully encapsulated in a nanostructured lipid carrier (hereinafter referred to as TQNLC) with excellent physiochemical properties such as high encapsulation efficiency, high drug-loading capacity, particle diameter less than 100 nm, and stability up to 2 years. In vitro studies also proved that TQNLC exhibited antiproliferative activity toward breast and cervical cancer cell lines. However, no toxicity profile related to this formulation has been reported. In this study, we determine and compare the in vivo toxicity of both TQNLC and TQ. MATERIALS AND METHODS: The in vivo toxicity (acute and subacute toxicity) study was carried out by oral administration of TQNLC and TQ to BALB/c mice. Animal survival, body weight, organ weight-to-body weight ratio, hematological profile, biochemistry profile, and histopathological changes were analyzed. RESULTS: In acute toxicity, TQ that is loaded in nanostructured lipid carrier (NLC) was found to be less toxic than pure TQ. It can be concluded that encapsulation of TQ in lipid carrier minimizes the toxicity of the compound. In the subacute toxicity study, oral administration of 100 mg/kg of TQNLC and TQ did not cause mortality to either male or female but resulted in toxicity to the liver. It is postulated that long-term consumption of TQNLC and TQ may cause toxicity to the liver but not to the extent of altering the functions of the organ. For both treatments, the no observed adverse effect level (NOAEL) was found to be 10 mg/kg/d for mice in both sexes. CONCLUSION: For long-term oral consumption, TQ and TQNLC at a dose of 10 mg/kg is safe in mice and does not exert any toxic effect. The results provide safety information of TQNLC, which would further help researchers in clinical use.


Subject(s)
Benzoquinones/chemistry , Benzoquinones/toxicity , Lipids/chemistry , Nanostructures/chemistry , Animals , Benzoquinones/pharmacology , Cell Line, Tumor , Cell Proliferation/drug effects , Drug Compounding , Female , Humans , Liver/drug effects , Male , Mice , Mice, Inbred BALB C , Nigella sativa/chemistry , Seeds/chemistry , Toxicity Tests, Acute
11.
Biomed Res Int ; 2016: 4036926, 2016.
Article in English | MEDLINE | ID: mdl-27525267

ABSTRACT

Ethnopharmacological Relevance. Colon cancer has been a major problem worldwide. Kelulut honey (KH) is produced by the stingless bees from Trigona species and has strong antioxidant activities that could be one of the potential chemopreventive agents from natural resources. Aim of This Study. This study investigated the chemopreventive properties and toxicity of KH in Sprague Dawley rats induced with azoxymethane (AOM). Material and Method. Twenty-four male Sprague Dawley rats aged 5 weeks were divided into 4 groups: (G1) untreated group not induced with AOM, (G2) untreated group induced with AOM, (G3) treated group induced with AOM, and (G4) treated group not induced with AOM. Injection of AOM (15 mg/kg) was via intraperitoneal route once a week for two subsequent weeks. The treatment groups were given oral administration of KH (1183 mg/kg body weight) twice daily for 8 weeks. Results. Treatment with KH significantly reduced the total number of aberrant crypt foci (ACF) and aberrant crypts (AC) and crypt multiplicity. KH was not toxic to the animals since the level of blood profile parameters, liver enzymes, and kidney functions was in normal range. Conclusions. The current finding shows that KH has chemopreventive properties in rats induced with colorectal cancer and also was found not toxic towards the animals.


Subject(s)
Azoxymethane , Chemoprevention/methods , Colorectal Neoplasms/pathology , Colorectal Neoplasms/prevention & control , Honey , Animals , Carcinogens , Colorectal Neoplasms/chemically induced , Male , Rats , Rats, Sprague-Dawley , Treatment Outcome
12.
J Ethnopharmacol ; 187: 195-204, 2016 Jul 01.
Article in English | MEDLINE | ID: mdl-27131434

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Dillenia suffruticosa is traditionally used for treatment of cancerous growth including breast cancer in Malaysia. AIM OF THE STUDY: Dillenia suffruticosa is a well-known medicinal plant in Malaysia for the treatment of cancer. Nevertheless, no study has been reported the cytotoxicity of this plant towards MDA-MB-231 triple-negative breast cancer cells. The present study was designed to investigate the mode of cell death and signalling pathways of MDA-MB-231 cells treated with dichloromethane Dillenia suffruticosa root extract (DCM-DS). METHODS: Extraction of Dillenia suffruticosa root was performed by the use of sequential solvent procedure. The cytotoxicity of DCM-DS was determined by using MTT assay. The mode of cell death was evaluated by using an inverted light microscope and flow cytometry analysis using Annexin-V/PI. Cell cycle analysis and measurement of reactive oxygen species level were performed by using flow cytometry. The cells were treated with DCM-DS and antioxidants α-tocopherol or ascorbic acid to evaluate the involvement of ROS in the cytotoxicity of DCM-DS. Effect of DCM-DS on the expression of antioxidant, apoptotic, growth, survival genes and proteins were analysed by using GeXP-based multiplex system and Western blot, respectively. The cytotoxicity of compounds isolated from DCM-DS was evaluated towards MDA-MB-231 cells using MTT assay. RESULTS: DCM-DS induced apoptosis, G2/M phase cell cycle arrest and oxidative stress in MDA-MB-231 cells. The induction of apoptosis in MDA-MB-231 cells by DCM-DS is possibly due to the activation of pro-apoptotic JNK1 and down-regulation of anti-apoptotic ERK1, which in turn down-regulates anti-apoptotic BCL-2 to increase the BAX/BCL-2 ratio to initiate the mitochondrial apoptotic pathway. The cell cycle arrest in DCM-DS-treated MDA-MB-231 cells is possibly via p53-independent but p21-dependent pathway. A total of 3 triterpene compounds were isolated from DCM-DS. Betulinic acid appears to be the most major and most cytotoxic compound in DCM-DS. CONCLUSION: The data suggest the potential application of DCM-DS in the treatment of triple-negative breast cancer.


Subject(s)
Antineoplastic Agents/pharmacology , Dilleniaceae , Plant Extracts/pharmacology , Apoptosis/drug effects , Cell Cycle/drug effects , Cell Line, Tumor , Cell Survival/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Humans , Mitogen-Activated Protein Kinase 3/genetics , Mitogen-Activated Protein Kinase 8/genetics , Plant Roots , Proto-Oncogene Proteins c-bcl-2/genetics , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/metabolism , Tumor Suppressor Protein p53/genetics , bcl-2-Associated X Protein/genetics
13.
BMC Complement Altern Med ; 15(1): 431, 2015 Dec 05.
Article in English | MEDLINE | ID: mdl-26638207

ABSTRACT

BACKGROUND: Drastic increment of skin cancer incidence has driven natural product-based chemoprevention as a promising approach in anticancer drug development. Apart from its traditional usages against various ailments, Ardisia crispa (Family: Myrsinaceae) specifically its triterpene-quinone fraction (TQF) which was isolated from the root hexane extract (ACRH) was recently reported to exert antitumor promoting activity in vitro. This study aimed at determining chemopreventive effect of TQF against chemically-induced mouse skin tumorigenesis as well as elucidating its possible pathway(s). METHODS: Mice (n = 10) were initiated with single dose of 7,12-dimethylbenz[α]anthracene (DMBA) (390 nmol/100 µl) followed by, a week later, repeated promotion (twice weekly; 20 weeks) with 12-O-tetradecanoylphorbol-13-acetate (TPA) (1.7 nmol/100 µl). TQF (10, 30 and 100 mg/kg) and curcumin (10 mg/kg; reference) were, respectively, applied topically to DMBA/TPA-induced mice 30 min before each TPA application. Upon termination, histopathological and biochemical analysis, as well as Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) and transcription factor enzyme-linked immunosorbent assay (ELISA) assays were performed to elucidate the potential mechanism of TQF. RESULTS: With comparison to the carcinogen control, results revealed that lower dose of TQF (10 mg/kg) conferred antitumor promoting effect via significant (P < 0.05) suppression against lipid peroxidation (LPO), apoptotic index (cell death) and nuclear factor-kappa B (NF-κB), along with reduction of keratinocyte proliferation; whilst its higher dose (100 mg/kg) was found to promote tumorigenesis by significantly (P < 0.05) increasing LPO and apoptotic index, in addition to aggravating keratinocyte proliferation. CONCLUSIONS: This study evidenced that TQF, particularly at its lower dosage (10 mg/kg), ameliorated DMBA/TPA-induced mouse skin tumorigenesis. Though, future investigations are warranted to determine the lowest possible therapeutic dose of TQF in subsequent in vivo chemopreventive studies.


Subject(s)
Anticarcinogenic Agents/administration & dosage , Ardisia , Quinones/administration & dosage , Skin Neoplasms/prevention & control , Skin/drug effects , Triterpenes/administration & dosage , 9,10-Dimethyl-1,2-benzanthracene/adverse effects , Administration, Topical , Animals , Cell Transformation, Neoplastic/drug effects , Chemical Fractionation , Chemoprevention , Curcumin/administration & dosage , Disease Models, Animal , Enzyme-Linked Immunosorbent Assay , Male , Mice , Mice, Inbred ICR , Plant Extracts/administration & dosage , Plant Roots , Skin/pathology , Skin Neoplasms/chemically induced , Tetradecanoylphorbol Acetate/adverse effects
14.
J Ethnopharmacol ; 166: 270-8, 2015 May 26.
Article in English | MEDLINE | ID: mdl-25797115

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Dillenia suffruticosa (Family: Dilleniaceae) or commonly known as "Simpoh air" in Malaysia, is traditionally used for treatment of cancerous growth including breast cancer. AIM OF THE STUDY: D. suffruticosa root dichloromethane extract (DCM-DS) has been reported to induce G0/G1 phase cell cycle arrest and apoptosis in caspase-3 deficient MCF-7 breast cancer cells. The present study was designed to investigate the involvement of p53/p21 and mitochondrial pathway in DCM-DS-treated MCF-7 cells as well as to identify the bioactive compounds responsible for the cytotoxicity of DCM-DS. MATERIALS AND METHODS: Extraction of D. suffruticosa root was performed by the use of sequential solvent procedure. GeXP-based multiplex system was employed to investigate the expression of p53, p21, Bax and Bcl-2 genes in MCF-7 cells treated with DCM-DS. The protein expression was then determined using Western blot analysis. The bioactive compounds present in DCM-DS were isolated by using column chromatography. The structure of the compounds was elucidated by using nuclear magnetic resonance spectroscopy. The cytotoxicity of the isolated compounds towards MCF-7 cells was evaluated by using MTT assay. The percentage of betulinic acid (BA) in DCM-DS was determined by HPLC analysis. RESULTS: The expression of p53 was significantly up-regulated at protein level. The expression of p21 at both gene and protein levels was significantly up-regulated upon treatment with DCM-DS, suggesting that the induction of G0/G1 phase cell cycle arrest in MCF-7 cells was via p53/p21 pathway. Bcl-2 protein was down-regulated with no change at the mRNA level, postulating that post-translational modification has occurred resulting in the degradation of Bcl-2 protein. Overall, treatment with DCM-DS increased the ratio of Bax/Bcl-2 that drove the cells to undergo apoptosis. A total of 3 triterpene compounds were isolated from DCM-DS. Betulinic acid appears to be the most major and most cytotoxic compound in DCM-DS. CONCLUSION: DCM-DS induced cell cycle arrest and apoptosis in MCF-7 cells via p53/p21 pathway. In addition, DCM-DS induced apoptosis by increasing the ratio of Bax/Bcl-2. Betulinic acid, which is one of the major compounds, is responsible for the cytotoxicity of the DCM-DS. Therefore, BA can be used as a marker for standardisation of herbal product from D. suffruticosa. DCM-DS can also be employed as BA-rich extract from roots of D. suffruticosa for the management of breast cancer.


Subject(s)
Apoptosis/drug effects , Cyclin-Dependent Kinase Inhibitor p21/metabolism , Dilleniaceae/chemistry , G1 Phase Cell Cycle Checkpoints/drug effects , Mitochondria/drug effects , Triterpenes/pharmacology , Tumor Suppressor Protein p53/metabolism , Apoptosis Regulatory Proteins/metabolism , Cell Line, Tumor , Humans , MCF-7 Cells , Mitochondria/metabolism , Pentacyclic Triterpenes , Plant Extracts/chemistry , Plant Extracts/pharmacology , Plant Roots/chemistry , Protein Processing, Post-Translational/drug effects , Proto-Oncogene Proteins c-bcl-2/metabolism , RNA, Messenger/metabolism , Resting Phase, Cell Cycle/drug effects , Signal Transduction/drug effects , bcl-2-Associated X Protein/drug effects , Betulinic Acid
15.
Biomed Res Int ; 2015: 263131, 2015.
Article in English | MEDLINE | ID: mdl-25632388

ABSTRACT

Thymoquinone (TQ) has been shown to exhibit antitumor properties. Thymoquinone-loaded nanostructured lipid carrier (TQ-NLC) was developed to improve the bioavailability and cytotoxicity of TQ. This study was conducted to determine the cytotoxic effects of TQ-NLC on breast cancer (MDA-MB-231 and MCF-7) and cervical cancer cell lines (HeLa and SiHa). TQ-NLC was prepared by applying the hot high pressure homogenization technique. The mean particle size of TQ-NLC was 35.66 ± 0.1235 nm with a narrow polydispersity index (PDI) lower than 0.25. The zeta potential of TQ-NLC was greater than -30 mV. Polysorbate 80 helps to increase the stability of TQ-NLC. Differential scanning calorimetry showed that TQ-NLC has a melting point of 56.73°C, which is lower than that of the bulk material. The encapsulation efficiency of TQ in TQ-NLC was 97.63 ± 0.1798% as determined by HPLC analysis. TQ-NLC exhibited antiproliferative activity towards all the cell lines in a dose-dependent manner which was most cytotoxic towards MDA-MB-231 cells. Cell shrinkage was noted following treatment of MDA-MB-231 cells with TQ-NLC with an increase of apoptotic cell population (P < 0.05). TQ-NLC also induced cell cycle arrest. TQ-NLC was most cytotoxic towards MDA-MB-231 cells. It induced apoptosis and cell cycle arrest in the cells.


Subject(s)
Benzoquinones/pharmacology , Lipids/chemistry , Nanostructures/chemistry , Calorimetry, Differential Scanning , Cell Cycle/drug effects , Cell Death/drug effects , Cell Line, Tumor , Cell Shape/drug effects , Female , HeLa Cells , Humans , Inhibitory Concentration 50 , MCF-7 Cells , Nanostructures/ultrastructure
16.
Nat Prod Res ; 28(22): 2026-30, 2014.
Article in English | MEDLINE | ID: mdl-24836304

ABSTRACT

An isomeric mixture of α,ß-amyrin (triterpene) and 2-methoxy-6-undecyl-1,4-benzoquinone (quinone) isolated from the Ardisia crispa root hexane (ACRH) extract was reported to possess anti-inflammatory properties in vivo. Considering the close association between inflammation and cancer, on top of the lack of antitumour study on those compounds, this study aimed to determine the potential of both compounds against tumour promotion in vitro, either as single agent or in combination. Triterpene and quinone compounds, as well as triterpene-quinone fraction (TQF) and ACRH were subjected to inhibition of Epstein-Barr virus-early antigen (EBV-EA) activation assay for that purpose. Compared with curcumin (positive control), inhibition against EBV-EA activation occurred in the order: ACRH>TQF ≥ curcumin>α,ß-amyrin ≥ 2-methoxy-6-undecyl-1,4-benzoquinone. These findings reported, for the first time, the antitumor-promoting effect of α,ß-amyrin and 2-methoxy-6-undecyl-1,4-benzoquinone from the roots of A. crispa, which was enhanced when both compounds act in synergy.


Subject(s)
Anticarcinogenic Agents/pharmacology , Antigens, Viral/drug effects , Ardisia/chemistry , Hexanes/chemistry , Quinones/pharmacology , Triterpenes/pharmacology , Benzoquinones/chemistry , Benzoquinones/isolation & purification , Benzoquinones/pharmacology , Curcumin , Gas Chromatography-Mass Spectrometry , Humans , Oleanolic Acid/analogs & derivatives , Oleanolic Acid/chemistry , Oleanolic Acid/isolation & purification , Oleanolic Acid/pharmacology , Plant Roots/chemistry , Triterpenes/isolation & purification
17.
Pharm Biol ; 52(7): 890-7, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24766363

ABSTRACT

CONTEXT: Dillenia (Dilleniaceae) is a genus of about 100 species of flowering plants in tropical and subtropical trees of Southern Asia, Australasia, and the Indian Ocean Islands. Until now, only eight Dillenia species have been reported to be used traditionally in different countries for various medical purposes. Out of eight species, D. pentagyna (Roxb), D. indica (Linn.) and D. suffruticosa (Griffith Ex. Hook. F. & Thomsom Martelli) have been reported to be used to treat cancerous growth. OBJECTIVE: The present review explored and provided information on the therapeutic potential of Dillenia species. METHODS: Comprehensive and relevant literature on the therapeutic potential of Dillenia species was gathered through electronic databases including Google Scholar, Scopus, PubMed, and books, without limiting the dates of publication. RESULTS AND CONCLUSION: The review demonstrated that only a few Dillenia species have been proven scientifically for their therapeutic potential in pre-clinical studies, including D. pentagyna, D. indica, D. papuana (Martelli), D. meliosmifolia (Hook. F. Ex. Thomsom) and D. suffruticosa (Griffith Ex Hook. F. & Thomson). A few species of Dillenia have undergone isolation and characterization of compounds with lupeol and betulinic acids having tremendous pharmacological potential. Dillenia species warrant further studies on their therapeutic potential, which may eventually lead to the development of new drug candidates for treatment of various diseases.


Subject(s)
Dilleniaceae/chemistry , Drug Evaluation, Preclinical , Pentacyclic Triterpenes/pharmacology , Plant Extracts/pharmacology , Triterpenes/pharmacology , Animals , Ethnopharmacology , Pentacyclic Triterpenes/isolation & purification , Plant Extracts/chemistry , Plants, Medicinal/chemistry , Triterpenes/isolation & purification , Betulinic Acid
18.
Article in English | MEDLINE | ID: mdl-23606884

ABSTRACT

Kenaf (Hibiscus cannabinus) from the family Malvaceae, is a valuable fiber plant native to India and Africa and is currently planted as the fourth commercial crop in Malaysia. Kenaf seed oil contains alpha-linolenic acid, phytosterol such as ß -sitosterol, vitamin E, and other antioxidants with chemopreventive properties. Kenaf seeds oil (KSO) was from supercritical carbon dioxide extraction fluid (SFE) at 9 different permutations of parameters based on range of pressures from 200 to 600 bars and temperature from 40 to 80°C. They were 200/40, 200/60, 200/80, 400/40, 400/60, 400/80, 600/40, 600/60, and 600/80. Extraction from 9 parameters of KSO-SFE was screened for cytotoxicity towards human colorectal cancer cell lines (HT29) and mouse embryonic fibroblast (NIH/3T3) cell lines using MTS assay. KSO-SFE at 600/40 showed the strongest cytotoxicity towards HT29 with IC50 of 200 µg/mL. The IC50 for NIH/3T3 was not detected even at highest concentration employed. Cell cycle analysis showed a significant increase in the accumulation of KSO-SFE-treated cells at sub-G1 phase, indicating the induction of apoptosis by KSO-SFE. Further apoptosis induction was confirmed by Annexin V/PI and AO/PI staining.

SELECTION OF CITATIONS
SEARCH DETAIL
...