Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 48
Filter
1.
Clin Transl Med ; 14(4): e1650, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38649772

ABSTRACT

BACKGROUND: Although many molecules have been investigated as biomarkers for spinal cord injury (SCI) or ischemic stroke, none of them are specifically induced in central nervous system (CNS) neurons following injuries with low baseline expression. However, neuronal injury constitutes a major pathology associated with SCI or stroke and strongly correlates with neurological outcomes. Biomarkers characterized by low baseline expression and specific induction in neurons post-injury are likely to better correlate with injury severity and recovery, demonstrating higher sensitivity and specificity for CNS injuries compared to non-neuronal markers or pan-neuronal markers with constitutive expressions. METHODS: In animal studies, young adult wildtype and global Atf3 knockout mice underwent unilateral cervical 5 (C5) SCI or permanent distal middle cerebral artery occlusion (pMCAO). Gene expression was assessed using RNA-sequencing and qRT-PCR, while protein expression was detected through immunostaining. Serum ATF3 levels in animal models and clinical human samples were measured using commercially available enzyme-linked immune-sorbent assay (ELISA) kits. RESULTS: Activating transcription factor 3 (ATF3), a molecular marker for injured dorsal root ganglion sensory neurons in the peripheral nervous system, was not expressed in spinal cord or cortex of naïve mice but was induced specifically in neurons of the spinal cord or cortex within 1 day after SCI or ischemic stroke, respectively. Additionally, ATF3 protein levels in mouse blood significantly increased 1 day after SCI or ischemic stroke. Importantly, ATF3 protein levels in human serum were elevated in clinical patients within 24 hours after SCI or ischemic stroke. Moreover, Atf3 knockout mice, compared to the wildtype mice, exhibited worse neurological outcomes and larger damage regions after SCI or ischemic stroke, indicating that ATF3 has a neuroprotective function. CONCLUSIONS: ATF3 is an easily measurable, neuron-specific biomarker for clinical SCI and ischemic stroke, with neuroprotective properties. HIGHLIGHTS: ATF3 was induced specifically in neurons of the spinal cord or cortex within 1 day after SCI or ischemic stroke, respectively. Serum ATF3 protein levels are elevated in clinical patients within 24 hours after SCI or ischemic stroke. ATF3 exhibits neuroprotective properties, as evidenced by the worse neurological outcomes and larger damage regions observed in Atf3 knockout mice compared to wildtype mice following SCI or ischemic stroke.


Subject(s)
Activating Transcription Factor 3 , Biomarkers , Ischemic Stroke , Neurons , Spinal Cord Injuries , Animals , Female , Humans , Male , Mice , Activating Transcription Factor 3/metabolism , Activating Transcription Factor 3/genetics , Biomarkers/metabolism , Biomarkers/blood , Disease Models, Animal , Ischemic Stroke/metabolism , Ischemic Stroke/genetics , Ischemic Stroke/blood , Mice, Knockout , Neurons/metabolism , Spinal Cord Injuries/metabolism , Spinal Cord Injuries/genetics , Spinal Cord Injuries/complications
2.
Global Spine J ; 14(3_suppl): 174S-186S, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38526922

ABSTRACT

STUDY DESIGN: Clinical practice guideline development. OBJECTIVES: Acute spinal cord injury (SCI) can result in devastating motor, sensory, and autonomic impairment; loss of independence; and reduced quality of life. Preclinical evidence suggests that early decompression of the spinal cord may help to limit secondary injury, reduce damage to the neural tissue, and improve functional outcomes. Emerging evidence indicates that "early" surgical decompression completed within 24 hours of injury also improves neurological recovery in patients with acute SCI. The objective of this clinical practice guideline (CPG) is to update the 2017 recommendations on the timing of surgical decompression and to evaluate the evidence with respect to ultra-early surgery (in particular, but not limited to, <12 hours after acute SCI). METHODS: A multidisciplinary, international, guideline development group (GDG) was formed that consisted of spine surgeons, neurologists, critical care specialists, emergency medicine doctors, physical medicine and rehabilitation professionals, as well as individuals living with SCI. A systematic review was conducted based on accepted methodological standards to evaluate the impact of early (within 24 hours of acute SCI) or ultra-early (in particular, but not limited to, within 12 hours of acute SCI) surgery on neurological recovery, functional outcomes, administrative outcomes, safety, and cost-effectiveness. The GRADE approach was used to rate the overall strength of evidence across studies for each primary outcome. Using the "evidence-to-recommendation" framework, recommendations were then developed that considered the balance of benefits and harms, financial impact, patient values, acceptability, and feasibility. The guideline was internally appraised using the Appraisal of Guidelines for Research and Evaluation (AGREE) II tool. RESULTS: The GDG recommended that early surgery (≤24 hours after injury) be offered as the preferred option for adult patients with acute SCI regardless of level. This recommendation was based on moderate evidence suggesting that patients were 2 times more likely to recover by ≥ 2 ASIA Impairment Score (AIS) grades at 6 months (RR: 2.76, 95% CI 1.60 to 4.98) and 12 months (RR: 1.95, 95% CI 1.26 to 3.18) if they were decompressed within 24 hours compared to after 24 hours. Furthermore, patients undergoing early surgery improved by an additional 4.50 (95% 1.70 to 7.29) points on the ASIA Motor Score compared to patients undergoing surgery after 24 hours post-injury. The GDG also agreed that a recommendation for ultra-early surgery could not be made on the basis of the current evidence because of the small sample sizes, variable definitions of what constituted ultra-early in the literature, and the inconsistency of the evidence. CONCLUSIONS: It is recommended that patients with an acute SCI, regardless of level, undergo surgery within 24 hours after injury when medically feasible. Future research is required to determine the differential effectiveness of early surgery in different subpopulations and the impact of ultra-early surgery on neurological recovery. Moreover, further work is required to define what constitutes effective spinal cord decompression and to individualize care. It is also recognized that a concerted international effort will be required to translate these recommendations into policy.

3.
Global Spine J ; 14(3_suppl): 212S-222S, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38526921

ABSTRACT

STUDY DESIGN: Development of a clinical practice guideline following the Grading of Recommendations, Assessment, Development and Evaluation (GRADE) process. OBJECTIVE: The objectives of this study were to develop guidelines that outline the utility of intraoperative neuromonitoring (IONM) to detect intraoperative spinal cord injury (ISCI) among patients undergoing spine surgery, to define a subset of patients undergoing spine surgery at higher risk for ISCI and to develop protocols to prevent, diagnose, and manage ISCI. METHODS: All systematic reviews were performed according to PRISMA standards and registered on PROSPERO. A multidisciplinary, international Guidelines Development Group (GDG) reviewed and discussed the evidence using GRADE protocols. Consensus was defined by 80% agreement among GDG members. A systematic review and diagnostic test accuracy (DTA) meta-analysis was performed to synthesize pooled evidence on the diagnostic accuracy of IONM to detect ISCI among patients undergoing spinal surgery. The IONM modalities evaluated included somatosensory evoked potentials (SSEPs), motor evoked potentials (MEPs), electromyography (EMG), and multimodal neuromonitoring. Utilizing this knowledge and their clinical experience, the multidisciplinary GDG created recommendations for the use of IONM to identify ISCI in patients undergoing spine surgery. The evidence related to existing care pathways to manage ISCI was summarized and based on this a novel AO Spine-PRAXIS care pathway was created. RESULTS: Our recommendations are as follows: (1) We recommend that intraoperative neurophysiological monitoring be employed for high risk patients undergoing spine surgery, and (2) We suggest that patients at "high risk" for ISCI during spine surgery be proactively identified, that after identification of such patients, multi-disciplinary team discussions be undertaken to manage patients, and that an intraoperative protocol including the use of IONM be implemented. A care pathway for the prevention, diagnosis, and management of ISCI has been developed by the GDG. CONCLUSION: We anticipate that these guidelines will promote the use of IONM to detect and manage ISCI, and promote the use of preoperative and intraoperative checklists by surgeons and other team members for high risk patients undergoing spine surgery. We welcome teams to implement and evaluate the care pathway created by our GDG.

4.
Global Spine J ; 14(3_suppl): 187S-211S, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38526923

ABSTRACT

STUDY DESIGN: Clinical practice guideline development following the GRADE process. OBJECTIVES: Hemodynamic management is one of the only available treatment options that likely improves neurologic outcomes in patients with acute traumatic spinal cord injury (SCI). Augmenting mean arterial pressure (MAP) aims to improve blood perfusion and oxygen delivery to the injured spinal cord in order to minimize secondary ischemic damage to neural tissue. The objective of this guideline was to update the 2013 AANS/CNS recommendations on the hemodynamic management of patients with acute traumatic SCI, acknowledging that much has been published in this area since its publication. Specifically, we sought to make recommendations on 1. The range of mean arterial pressure (MAP) to be maintained by identifying an upper and lower MAP limit; 2. The duration of such MAP augmentation; and 3. The choice of vasopressor. Additionally, we sought to make a recommendation on spinal cord perfusion pressure (SCPP) targets. METHODS: A multidisciplinary guideline development group (GDG) was formed that included health care professionals from a wide range of clinical specialities, patient advocates, and individuals living with SCI. The GDG reviewed the 2013 AANS/CNS guidelines and voted on whether each recommendation should be endorsed or updated. A systematic review of the literature, following PRISMA standards and registered in PROSPERO, was conducted to inform the guideline development process and address the following key questions: (i) what are the effects of goal-directed interventions to optimize spinal cord perfusion on extent of neurological recovery and rates of adverse events at any time point of follow-up? and (ii) what are the effects of particular monitoring techniques, perfusion ranges, pharmacological agents, and durations of treatment on extent of neurological recovery and rates of adverse events at any time point of follow-up? The GDG combined the information from this systematic review with their clinical expertise in order to develop recommendations on a MAP target range (specifically an upper and lower limit to target), the optimal duration for MAP augmentation, and the use of vasopressors or inotropes. Using methods outlined by the GRADE working group, recommendations were formulated that considered the balance of benefits and harms, financial impact, acceptability, feasibility and patient preferences. RESULTS: The GDG suggested that MAP should be augmented to at least 75-80 mmHg as the "lower limit," but not actively augmented beyond an "upper limit" of 90-95 mmHg in order to optimize spinal cord perfusion in acute traumatic SCI. The quality of the evidence around the "target MAP" was very low, and thus the strength of this recommendation is weak. For duration of hemodynamic management, the GDG "suggested" that MAP be augmented for a duration of 3-7 days. Again, the quality of the evidence around the duration of MAP support was very low, and thus the strength of this recommendation is also weak. The GDG felt that a recommendation on the choice of vasopressor or the use of SCPP targets was not warranted, given the dearth of available evidence. CONCLUSION: We provide new recommendations for blood pressure management after acute SCI that acknowledge the limitations of the current evidence on the relationship between MAP and neurologic recovery. It was felt that the low quality of existing evidence and uncertainty around the relationship between MAP and neurologic recovery justified a greater range of MAP to target, and for a broader range of days post-injury than recommended in previous guidelines. While important knowledge gaps still remain regarding hemodynamic management, these recommendations represent current perspectives on the role of MAP augmentation for acute SCI.

5.
Neurosurg Focus ; 55(4): E17, 2023 10.
Article in English | MEDLINE | ID: mdl-37778033

ABSTRACT

OBJECTIVE: Venous thromboembolism (VTE) following traumatic spinal cord injury (SCI) is a significant clinical concern. This study sought to determine the incidence of VTE and hemorrhagic complications among patients with SCI who received low-molecular-weight heparin (LMWH) within 24 hours of injury or surgery and identify variables that predict VTE using the prospective Transforming Research and Clinical Knowledge in SCI (TRACK-SCI) database. METHODS: The TRACK-SCI database was queried for individuals with traumatic SCI from 2015 to 2022. Primary outcomes of interest included rates of VTE (including deep vein thrombosis [DVT] and pulmonary embolism [PE]) and in-hospital hemorrhagic complications that occurred after LWMH administration. Secondary outcomes included intensive care unit and hospital length of stay, discharge location type, and in-hospital mortality. RESULTS: The study cohort consisted of 162 patients with SCI. Fifteen of the 162 patients withdrew from the study, leading to loss of data for certain variables for these patients. One hundred thirty patients (87.8%) underwent decompression and/or fusion surgery for SCI. DVT occurred in 11 (7.4%) of 148 patients, PE in 9 (6.1%) of 148, and any VTE in 18 (12.2%) of 148 patients. The analysis showed that admission lower-extremity motor score (p = 0.0408), injury at the thoracic level (p = 0.0086), admission American Spinal Injury Association grade (p = 0.0070), and younger age (p = 0.0372) were significantly associated with VTE. There were 3 instances of postoperative spine surgery-related bleeding (2.4%) in the 127 patients who had spine surgery with bleeding complication data available, with one requiring return to surgery (0.8%). Thirteen (8.8%) of 147 patients had a bleeding complication not related to spine surgery. There were 2 gastrointestinal bleeds associated with nasogastric tube placement, 3 cases of postoperative non-spine-related surgery bleeding, and 8 cases of other bleeding complications (5.4%) not related to any surgery. CONCLUSIONS: Initiation of LMWH within 24 hours was associated with a low rate of spine surgery-related bleeding. Bleeding complications unrelated to SCI surgery still occur with LMWH administration. Because neurosurgical intervention is typically the limiting factor in initializing chemical DVT prophylaxis, many of these bleeding complications would have likely occurred regardless of the protocol.


Subject(s)
Pulmonary Embolism , Spinal Cord Injuries , Spinal Injuries , Venous Thromboembolism , Humans , Heparin, Low-Molecular-Weight/adverse effects , Venous Thromboembolism/drug therapy , Venous Thromboembolism/prevention & control , Venous Thromboembolism/epidemiology , Prospective Studies , Anticoagulants/adverse effects , Spinal Cord Injuries/complications , Spinal Cord Injuries/drug therapy , Spinal Cord Injuries/surgery , Pulmonary Embolism/drug therapy , Pulmonary Embolism/epidemiology , Pulmonary Embolism/prevention & control , Postoperative Hemorrhage/epidemiology , Registries , Heparin
6.
Cureus ; 14(3): e23213, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35449661

ABSTRACT

Complete traumatic cervical fracture-dislocation with spinal cord transection in children is a rare entity with no evidence-based guidelines on management. The authors reviewed the literature for pediatric spinal cord injury and present the case of a 3-year-old with traumatic cervical fracture-dislocation and spinal cord transection who presented as a cervical-6 complete spinal cord injury (ASIA A). His other organ systems injured included liver, spleen, bowel, and abdominal aortic injury. The patient underwent halo placement for preoperative reduction followed by open reduction and internal fixation with posterior segmental instrumented fusion. Intraoperatively, the patient had motor evoked potential signals present below the level of his injury. Early postoperative follow-up demonstrated that, although his leg function did not improve, he did demonstrate improvement in upper extremities. This is a rare case of complete cervical spinal cord transection in a pediatric patient. We elected to manage this challenging case with initial external reduction and orthosis with a halo vest followed by acute posterior cervical fusion. Despite a cervical-6 injury level on clinical exam, there was electrographic evidence of function below that level on intraoperative neuromonitoring. Postoperatively the patient has recovered some lost function.

7.
ACS Biomater Sci Eng ; 8(4): 1544-1553, 2022 04 11.
Article in English | MEDLINE | ID: mdl-35294162

ABSTRACT

After the spinal cord injury, inflammation and cytotoxicity cause further damage to neural cells. The progression of this secondary injury might be reduced by the administration of anti-inflammatory drugs. To allow the local delivery of such drugs while minimizing dural opening, we have created a polypyrrole (PPy)-coated microneedle array using a microscale three-dimensional (3D) printing technology that facilitates electronically controlled encapsulation and the transdural release of drugs. PPy microneedles demonstrated an electronically controlled release of steroid dexamethasone (Dexa) in a novel in vitro transdural model and in vivo. The biological activity of the device was then tested by the electronic release of Dexa into an in vitro model of neuroinflammation, using activated microglia. Following electrically activated Dexa release, inflammation was reduced, as demonstrated by a decrease in nitric oxide and proinflammatory cytokines Il-6 and MCP-1. These results demonstrate the feasibility of PPy-coated microneedles for the transdural delivery of anti-inflammatory drugs to the central nervous system.


Subject(s)
Polymers , Pyrroles , Drug Liberation , Humans , Inflammation , Printing, Three-Dimensional
8.
Phys Ther ; 102(1)2022 01 01.
Article in English | MEDLINE | ID: mdl-35076067

ABSTRACT

OBJECTIVE: This study investigated the effect of cervical and lumbar transcutaneous spinal cord stimulation (tSCS) combined with intensive training to improve walking and autonomic function after chronic spinal cord injury (SCI). METHODS: Two 64-year-old men with chronic motor incomplete cervical SCI participated in this single-subject design study. They each underwent 2 months of intensive locomotor training and 2 months of multisite cervical and lumbosacral tSCS paired with intensive locomotor training. RESULTS: The improvement in 6-Minute Walk Test distance after 2 months of tSCS with intensive training was threefold greater than after locomotor training alone. Both participants improved balance ability measured by the Berg Balance Scale and increased their ability to engage in daily home exercises. Gait analysis demonstrated increased step length for each individual. Both participants experienced improved sensation and bowel function, and 1 participant eliminated the need for intermittent catheterization after the stimulation phase of the study. CONCLUSION: These results suggest that noninvasive spinal cord stimulation might promote recovery of locomotor and autonomic functions beyond traditional gait training in people with chronic incomplete cervical SCI. IMPACT: Multisite transcutaneous spinal stimulation may induce neuroplasticity of the spinal networks and confer functional benefits following chronic cervical SCI.


Subject(s)
Exercise Therapy/methods , Gait Disorders, Neurologic/therapy , Neurogenic Bowel/therapy , Spinal Cord Injuries/therapy , Spinal Cord Stimulation/methods , Biomechanical Phenomena , Cervical Vertebrae , Combined Modality Therapy , Humans , Lumbar Vertebrae , Male , Middle Aged , Recovery of Function , Walk Test
9.
Nat Rev Mater ; 7(4): 314-331, 2022 Apr.
Article in English | MEDLINE | ID: mdl-38464996

ABSTRACT

Despite the rising global incidence of central nervous system (CNS) disorders, CNS drug development remains challenging, with high costs, long pathways to clinical use and high failure rates. The CNS is highly protected by physiological barriers, in particular, the blood-brain barrier and the blood-cerebrospinal fluid barrier, which limit access of most drugs. Biomaterials can be designed to bypass or traverse these barriers, enabling the controlled delivery of drugs into the CNS. In this Review, we first examine the effects of normal and diseased CNS physiology on drug delivery to the brain and spinal cord. We then discuss CNS drug delivery designs and materials that are administered systemically, directly to the CNS, intranasally or peripherally through intramuscular injections. Finally, we highlight important challenges and opportunities for materials design for drug delivery to the CNS and the anticipated clinical impact of CNS drug delivery.

10.
Neurosurg Focus ; 50(6): E5, 2021 06.
Article in English | MEDLINE | ID: mdl-34062498

ABSTRACT

OBJECTIVE: Recombinant human bone morphogenetic protein-2 (rhBMP-2) is used in spinal arthrodesis procedures to enhance bony fusion. Research has suggested that it is the most cost-effective fusion enhancer, but there are significant upfront costs for the healthcare system. The primary objective of this study was to determine whether intraoperative dosing and corresponding costs changed with surgeon cost awareness. The secondary objective was to describe surgical complications before and after surgeon awareness of rhBMP-2 cost. METHODS: A retrospective medical record review was conducted to identify patients who underwent spinal arthrodesis procedures performed by a single surgeon, supplemented with rhBMP-2, from June 2016 to June 2018. Collected data included rhBMP-2 dosage, rhBMP-2 list price, and surgical complications. Expected Medicare reimbursement was calculated. Data were analyzed before and after surgeon awareness of rhBMP-2 cost. RESULTS: Forty-eight procedures were performed using rhBMP-2, 16 before and 32 after surgeon cost awareness. Prior to cost awareness, the most frequent rhBMP-2 dosage level was x-small (38.9%, n = 7), followed by large (27.8%, n = 5) and small (22.2%, n = 4). After cost awareness, the most frequent rhBMP-2 dosage was xx-small (56.8%, n = 21), followed by x-small (21.6%, n = 8) and large (13.5%, n = 5). The rhBMP-2 average cost per surgery was $4116.56 prior to surgeon cost awareness versus $2268.38 after. Two complications were observed in the pre-cost awareness surgical group; 2 complications were observed in the post-cost awareness surgical group. CONCLUSIONS: Surgeon awareness of rhBMP-2 cost resulted in use of smaller rhBMP-2 doses, decreased rhBMP-2 cost per surgery, and decreased overall hospital admission charges, without a detectable increase in surgical complications.


Subject(s)
Spinal Fusion , Surgeons , Aged , Bone Morphogenetic Protein 2 , Humans , Lumbar Vertebrae , Medicare , Recombinant Proteins , Retrospective Studies , Transforming Growth Factor beta , United States
13.
Spine (Phila Pa 1976) ; 46(7): E450-E457, 2021 Apr 01.
Article in English | MEDLINE | ID: mdl-33290376

ABSTRACT

STUDY DESIGN: International, multicenter, prospective, longitudinal observational cohort. OBJECTIVE: To assess how new motor deficits affect patient reported quality of life scores after adult deformity surgery. SUMMARY OF BACKGROUND DATA: Adult spinal deformity surgery is associated with high morbidity, including risk of new postoperative motor deficit. It is unclear what effect new motor deficit has on Health-related Quality of Life scores (HRQOL) scores. METHODS: Adult spinal deformity patients were enrolled prospectively at 15 sites worldwide. Other inclusion criteria included major Cobb more than 80°, C7-L2 curve apex, and any patient undergoing three column osteotomy. American Spinal Injury Association (ASIA) scores and standard HRQOL scores were recorded pre-op, 6 weeks, 6 months, and 2 years. RESULTS: Two hundred seventy two complex adult spinal deformity (ASD) patients enrolled. HRQOL scores were worse for patients with lower extremity motor score (LEMS). Mean HRQOL changes at 6 weeks and 2 years compared with pre-op for patients with motor worsening were: ODI (+12.4 at 6 weeks and -4.7 at 2 years), SF-36v2 physical (-4.5 at 6 weeks and +2.3 at 2 years), SRS-22r (0.0 at 6 weeks and +0.4 at 2 years). Mean HRQOL changes for motor-neutral patients were: ODI (+0.6 at 6 weeks and -12.1 at 2 years), SF-36v2 physical (-1.6 at 6 weeks and +5.9 at 2 years), and SRS-22r (+0.4 at 6 weeks and +0.7 at 2 years). For patients with LEMS improvement, mean HRQOL changes were: ODI (-0.6 at 6 weeks and -16.3 at 2 years), SF-36v2 physical (+1.0 at 6 weeks and +7.0 at 2 years), and SRS-22r (+0.5 at 6 weeks and +0.9 at 2 years). CONCLUSION: In the subgroup of deformity patients who developed a new motor deficit, total HRQOLs and HRQOL changes were negatively impacted. Patients with more than 2 points of LEMS worsening had the worst changes, but still showed overall HRQOL improvement at 6 months and 2 years compared with pre-op baseline.Level of Evidence: 3.


Subject(s)
Motor Skills Disorders/psychology , Osteotomy/adverse effects , Postoperative Complications/psychology , Quality of Life/psychology , Spinal Diseases/psychology , Spinal Diseases/surgery , Adolescent , Adult , Aged , Aged, 80 and over , Cohort Studies , Female , Humans , Longitudinal Studies , Male , Middle Aged , Motor Skills Disorders/diagnosis , Motor Skills Disorders/etiology , Neurosurgical Procedures/adverse effects , Neurosurgical Procedures/trends , Osteotomy/trends , Postoperative Complications/diagnosis , Postoperative Complications/etiology , Prospective Studies , Retrospective Studies , Spinal Diseases/diagnosis , Young Adult
14.
Spine (Phila Pa 1976) ; 46(3): 143-151, 2021 Feb 01.
Article in English | MEDLINE | ID: mdl-32796459

ABSTRACT

STUDY DESIGN: Retrospective hospital-registry study. OBJECTIVE: To characterize the microbial epidemiology of surgical site infection (SSI) in spinal fusion surgery and the burden of resistance to standard surgical antibiotic prophylaxis. SUMMARY OF BACKGROUND DATA: SSI persists as a leading complication of spinal fusion surgery despite the growth of enhanced recovery programs and improvements in other measures of surgical quality. Improved understandings of SSI microbiology and common mechanisms of failure for current prevention strategies are required to inform the development of novel approaches to prevention relevant to modern surgical practice. METHODS: Spinal fusion cases performed at a single referral center between January 2011 and June 2019 were reviewed and SSI cases meeting National Healthcare Safety Network criteria were identified. Using microbiologic and procedural data from each case, we analyzed the anatomic distribution of pathogens, their differential time to presentation, and correlation with methicillin-resistant Staphylococcus aureus screening results. Susceptibility of isolates cultured from each infection were compared with the spectrum of surgical antibiotic prophylaxis administered during the index procedure on a per-case basis. Susceptibility to alternate prophylactic agents was also modeled. RESULTS: Among 6727 cases, 351 infections occurred within 90 days. An anatomic gradient in the microbiology of SSI was observed across the length of the back, transitioning from cutaneous (gram-positive) flora in the cervical spine to enteric (gram-negative/anaerobic) flora in the lumbosacral region (correlation coefficient 0.94, P < 0.001). The majority (57.5%) of infections were resistant to the prophylaxis administered during the procedure. Cephalosporin-resistant gram-negative infection was common at lumbosacral levels and undetected methicillin-resistance was common at cervical levels. CONCLUSION: Individualized infection prevention strategies tailored to operative level are needed in spine surgery. Endogenous wound contamination with enteric flora may be a common mechanism of infection in lumbosacral fusion. Novel approaches to prophylaxis and prevention should be prioritized in this population.Level of Evidence: 3.


Subject(s)
Anti-Bacterial Agents/therapeutic use , Antibiotic Prophylaxis , Spinal Fusion , Surgical Wound Infection/drug therapy , Surgical Wound Infection/microbiology , Aged , Awards and Prizes , Female , Humans , Male , Methicillin Resistance , Methicillin-Resistant Staphylococcus aureus , Middle Aged , Postoperative Complications , Retrospective Studies , Spine/microbiology , Spine/surgery , Surgical Wound Infection/epidemiology , Surgical Wound Infection/prevention & control
15.
World Neurosurg ; 143: e561-e566, 2020 11.
Article in English | MEDLINE | ID: mdl-32791222

ABSTRACT

BACKGROUND: Coronavirus disease-2019 (COVID-19) is a novel disease caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) that rapidly spread around the globe. The dramatic increase in the number of cases and deaths have placed tremendous strain on health care systems worldwide. As health care workers and society adjust to focus treatment and prevention of COVID-19, other facets of the health care enterprise are affected, particularly surgical volume and revenue. The purpose of this study was to describe the financial impact of COVID-19 on an academic neurosurgery department. METHODS: A retrospective review of weekly average daily work relative value units (wRVUs) were compared before and after COVID-19 in the fiscal year 2020. A comparative time period of the same months in the year prior was also included for review. We also review strategies for triaging neurosurgical disease as needing emergent, urgent, or routine operative treatment. RESULTS: Daily average wRVU after COVID-19 dropped significantly with losses in all weeks examined. Of the 7 weeks in the current post-COVID period, the weekly daily average wRVU was 173 (range, 128-363). The mean decline was 51.4% compared with the pre-COVID era. Both inpatient and outpatient revenue was affected. CONCLUSIONS: COVID-19 had a profound detrimental effect on surgical productivity and revenue generation.


Subject(s)
COVID-19/virology , Neurosurgery/economics , Neurosurgical Procedures/economics , SARS-CoV-2/pathogenicity , Adult , Delivery of Health Care/economics , Female , Health Personnel/economics , Humans , Male , Retrospective Studies
16.
JAMA Neurol ; 77(9): 1150-1158, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32539101

ABSTRACT

Importance: Intracranial pressure (ICP) elevation is a compartment syndrome that impairs blood flow to the brain. Despite the importance of ICP values in neurocritical care, normal ICP values and the precise ICP threshold at which treatment should be initiated remain uncertain. Objective: To refine our understanding of normal ICP values and determine the ICP threshold most strongly associated with outcome. Design, Setting, and Participants: Prospective observational study (2004-2010), with outcomes determined at hospital discharge. The study included neurocritical care patients from a single level I trauma center, San Francisco General Hospital. Three hundred eighty-three patients had a traumatic brain injury with or without craniectomy; 140 patients had another indication for ICP monitoring. Consecutive patients were studied. Data analyses were completed between March 2015 and December 2019. Exposures: Five hundred twenty-three ICP-monitored patients. Main Outcomes and Measures: A computer system prospectively and automatically collected 1-minute physiologic data from patients in the intensive care unit during a 6-year period. Mean ICP was calculated, as was the proportion of ICP values greater than thresholds from 1 to 80 mm Hg in 1-mm Hg increments. The association between these measures and outcome was explored for various epochs up to 30 days from the time of injury. A principal component analysis was used to explore physiologic changes at various ICP thresholds, and elastic net regression was used to identify ICP thresholds most strongly associated with Glasgow Outcome Scale score at discharge. Results: Of the 523 studied patients, 70.7% of studied patients were men (n = 370) and 72.1% had a traumatic brain injury (n = 377). A total of 4 090 964 1-minute ICP measurements were recorded for the included patients (7.78 years of recordings). Intracranial pressure values of 8 to 9 mm Hg were most commonly recorded and could possibly reflect normal values. The principal component analysis suggested state shifts in the physiome occurred at ICPs greater than 19 mm Hg and 24 mm Hg. Elastic net regression identified an ICP threshold of 19 mm Hg as most robustly associated with outcome when considering all neurocritical care patients, patients with TBI, and patients with TBI who underwent craniectomy. Intracranial pressure values greater than 19 mm Hg were associated with mortality, while lower values were associated with outcome in surviving patients. Conclusions and Relevance: This study provides insight into what normal ICP values could be. An ICP threshold of 19 mm Hg was robustly associated with outcome in studied patients, although lower ICP values were associated with outcome in surviving patients.


Subject(s)
Brain Diseases/physiopathology , Brain Diseases/therapy , Intracranial Pressure , Neurophysiological Monitoring/standards , Outcome Assessment, Health Care , Adult , Aged , Brain Injuries, Traumatic/physiopathology , Brain Injuries, Traumatic/therapy , Critical Care , Female , Glasgow Outcome Scale , Humans , Intracranial Pressure/physiology , Male , Middle Aged , Prospective Studies , Reference Values , Severity of Illness Index
17.
Neurosurgery ; 87(6): 1157-1166, 2020 11 16.
Article in English | MEDLINE | ID: mdl-32497210

ABSTRACT

BACKGROUND: Spinal cord dose limits are critically important for the safe practice of spine stereotactic body radiotherapy (SBRT). However, the effect of inherent spinal cord motion on cord dose in SBRT is unknown. OBJECTIVE: To assess the effects of cord motion on spinal cord dose in SBRT. METHODS: Dynamic balanced fast field echo (BFFE) magnetic resonance imaging (MRI) was obtained in 21 spine metastasis patients treated with SBRT. Planning computed tomography (CT), conventional static T2-weighted MRI, BFFE MRI, and dose planning data were coregistered. Spinal cord from the dynamic BFFE images (corddyn) was compared with the T2-weighted MRI (cordstat) to analyze motion of corddyn beyond the cordstat (Dice coefficient, Jaccard index), and beyond cordstat with added planning organ at risk volume (PRV) margins. Cord dose was compared between cordstat, and corddyn (Wilcoxon signed-rank test). RESULTS: Dice coefficient (0.70-0.95, median 0.87) and Jaccard index (0.54-0.90, median 0.77) demonstrated motion of corddyn beyond cordstat. In 62% of the patients (13/21), the dose to corddyn exceeded that of cordstat by 0.6% to 13.8% (median 4.3%). The corddyn spatially excursed outside the 1-mm PRV margin of cordstat in 9 patients (43%); among these dose to corddyn exceeded dose to cordstat >+ 1-mm PRV margin in 78% of the patients (7/9). Corddyn did not excurse outside the 1.5-mm or 2-mm PRV cord cordstat margin. CONCLUSION: Spinal cord motion may contribute to increases in radiation dose to the cord from SBRT for spine metastasis. A PRV margin of at least 1.5 to 2 mm surrounding the cord should be strongly considered to account for inherent spinal cord motion.


Subject(s)
Radiosurgery , Spinal Neoplasms , Humans , Magnetic Resonance Imaging , Radiotherapy Planning, Computer-Assisted , Spinal Cord , Spinal Neoplasms/diagnostic imaging , Spinal Neoplasms/radiotherapy , Spinal Neoplasms/surgery , Spine
19.
Neurosurgery ; 87(3): E347-E354, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32297951

ABSTRACT

BACKGROUND: Anterior column realignment (ACR) is a less invasive alternative to 3-column osteotomy for the correction of sagittal imbalance. We hypothesized that ACR would correct sagittal imbalance with an acceptable neurological risk. OBJECTIVE: To assess long-term neurological and radiographic outcomes after ACR. METHODS: Patients ≥18 yr who underwent ACR from 2005 to 2013 were eligible. Standing scoliosis radiographs were studied at preoperation, postoperation (≤6 wk), and at minimum 2 yr of follow-up. Clinical/radiographic data were collected through a retrospective chart review, with thoracic 1 spino-pelvic inclination (T1SPi) used as the angular surrogate for sagittal vertical axis. RESULTS: A total of 26 patients had complete data, with a mean follow-up of 2.8 yr (1.8-7.4). Preoperative, sagittal parameters were lumbar lordosis (LL) of -16.1°, pelvic incidence (PI)-LL of 41.7°, T1SPi of 3.6°, and pelvis tilt (PT) of 32.4°. LL improved by 30.6° (P < .001) postoperation. Mean changes in PT (-8.3), sacral slope (8.9), T1SPi (-4.9), and PI-LL (-33.5) were all significant. The motion segment angle improved by 26.6°, from 5.2° to -21.4° (P < .001). Neurological complications occurred in 32% patients postoperation (n = 8; 1 patient with both sensory and motor). New thigh numbness/paresthesia developed in 3 (13%) patients postoperation; only 1 (4%) persisted at latest follow-up. A total of 6 (24%) patients developed a new lower extremity motor deficit postoperation, with 4 (8%) having persistent new weakness at last follow-up. Out of 8 patients with preoperative motor deficit, half saw improvement postoperation and 75% improved by last follow-up. CONCLUSION: There was net motor improvement, with 24% of patients improving and 16% having persistent new weakness at latest follow-up; 60% were unchanged. Radiographic results demonstrate that ACR is a useful tool to treat severe sagittal plane deformity.


Subject(s)
Osteotomy/methods , Spinal Curvatures/surgery , Spinal Fusion/methods , Adult , Aged , Aged, 80 and over , Female , Humans , Lumbar Vertebrae/surgery , Male , Middle Aged , Retrospective Studies
SELECTION OF CITATIONS
SEARCH DETAIL
...