Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Monit Assess ; 192(12): 792, 2020 Nov 26.
Article in English | MEDLINE | ID: mdl-33242179

ABSTRACT

Eutrophication of rivers and streams in agricultural lands is one of the main threats for biodiversity and ecosystem functions. This study was focused on seven subtropical streams where agriculture is the predominant land use. We tested the hypothesis that (i) eutrophication causes a decrease in taxonomic and functional diversity of zooplankton, leading to potential consequences for the ecosystem integrity. Furthermore, given that the temporal variability in the environmental conditions of each stream may influence the species sorting mechanisms, we also hypothesized that (ii) streams with higher temporal environmental variability have greater taxonomic and functional alpha (α) and temporal beta (ßt) diversity measures regardless of the trophic state. Thus, we characterized the streams according to their trophic state and analyzed the zooplankton composition, α and ßt by using taxonomic and functional perspectives. We found differences in the zooplankton composition between mesotrophic and eutrophic streams. However, eutrophic streams supported similar taxonomic and functional α diversity and similar taxonomic ßt diversity to mesotrophic ones. These results were mainly explained by the occurrence of rare species occupying different temporal niches in eutrophic systems. On the contrary, functional ßt diversity was lower in the eutrophic streams, being nestedness the ecological mechanisms underlying the variability in the zooplankton functional groups. Streams with higher temporal environmental variability supported greater α taxonomic diversity. However, the ßt diversity metrics showed no correlation with the environmental variability, suggesting that the environmental filters of the studied systems were the overriding determinants of species turnover. Our study suggests that both taxonomic and functional perspectives should be considered to improve our knowledge on the biotic responses to environmental changes. Also, among all metrics analyzed on the zooplankton community, functional ßt diversity was the most sensitive indicator of the eutrophication impact.


Subject(s)
Rivers , Zooplankton , Agriculture , Animals , Benchmarking , Biodiversity , Ecosystem , Environmental Monitoring , Eutrophication
SELECTION OF CITATIONS
SEARCH DETAIL
...