Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Omega ; 4(1): 1854-1860, 2019 Jan 31.
Article in English | MEDLINE | ID: mdl-31459440

ABSTRACT

Nonoxidative dehydrogenation of methanol to methyl formate over a CuMgO-based catalyst was investigated. Although the active site is metallic copper (Cu0), the best reaction conditions were obtained by tuning the ratio of Cu/Mg and doping the catalyst with 1 wt % of Pd to achieve a very specific activity for methyl formate synthesis. On the basis of the CO2 temperature-programmed desorption study, the basic strength of the catalyst plays a role in the efficient conversion of methanol to methyl formate via dehydrogenation. These CuMgO-based catalysts show excellent thermal stability during the reaction and the regeneration processes. Approx. 80% methanol conversion with constant selectivity to methyl formate was achieved even after 4 rounds of usage for a total reaction time exceeding 200 h, indicative of their potential for practical applications.

2.
ACS Omega ; 3(4): 3688-3701, 2018 Apr 30.
Article in English | MEDLINE | ID: mdl-31458617

ABSTRACT

Ni and NiSn supported on zirconia (ZrO2) and on indium (In)-incorporated zirconia (InZrO2) catalysts were prepared by a wet chemical reduction route and tested for hydrogenation of CO2 to methanol in a fixed-bed isothermal flow reactor at 250 °C. The mono-metallic Ni (5%Ni/ZrO2) catalysts showed a very high selectivity for methane (99%) during CO2 hydrogenation. Introduction of Sn to this material with the following formulation 5Ni5Sn/ZrO2 (5% Ni-5% Sn/ZrO2) showed the rate of methanol formation to be 0.0417 µmol/(gcat·s) with 54% selectivity. Furthermore, the combination NiSn supported on InZrO2 (5Ni5Sn/10InZrO2) exhibited a rate of methanol formation 10 times higher than that on 5Ni/ZrO2 (0.1043 µmol/(gcat·s)) with 99% selectivity for methanol. All of these catalysts were characterized by X-ray diffraction, high-resolution transmission electron microscopy (HRTEM), scanning transmission electron microscopy (STEM), X-ray photoelectron spectroscopy, CO2-temperature-programmed desorption, and density functional theory (DFT) studies. Addition of Sn to Ni catalysts resulted in the formation of a NiSn alloy. The NiSn alloy particle size was kept in the range of 10-15 nm, which was evidenced by HRTEM study. DFT analysis was carried out to identify the surface composition as well as the structural location of each element on the surface in three compositions investigated, namely, Ni28Sn27, Ni18Sn37, and Ni37Sn18 bimetallic nanoclusters, and results were in agreement with the STEM and electron energy-loss spectroscopy results. Also, the introduction of "Sn" and "In" helped improve the reducibility of Ni oxide and the basic strength of catalysts. Considerable details of the catalytic and structural properties of the Ni, NiSn, and NiSnIn catalyst systems were elucidated. These observations were decisive for achieving a highly efficient formation rate of methanol via CO2 by the H2 reduction process with high methanol selectivity.

3.
ChemSusChem ; 9(15): 1911-5, 2016 08 09.
Article in English | MEDLINE | ID: mdl-27345621

ABSTRACT

Activation of Fe2 O3 -Al2 O3 with CH4 (instead of H2 ) is a meaningful method to achieve catalytic methane decomposition (CMD). This reaction of CMD is more economic and simple against commercial methane steam reforming (MSR) as it produces COx -free H2 . In this study, for the first time, structure changes of the catalyst were screened during CH4 reduction with time on stream. The aim was to optimize the pretreatment conditions through understanding the activation mechanism. Based on results from various characterization techniques, reduction of Fe2 O3 by CH4 proceeds in three steps: Fe2 O3 →Fe3 O4 →FeO→Fe0. Once Fe0 is formed, it decomposes CH4 with formation of Fe3 C, which is the crucial initiation step in the CMD process to initiate formation of multiwall carbon nanotubes.


Subject(s)
Aluminum Oxide/chemistry , Ferric Compounds/chemistry , Methane/chemistry , Catalysis , Kinetics , Temperature
4.
ChemSusChem ; 9(11): 1243-8, 2016 06 08.
Article in English | MEDLINE | ID: mdl-27159367

ABSTRACT

The presence of a Fe-FeAl2 O4 structure over an Fe-Al2 O3 catalysts is demonstrated to be vital for the catalytic methane decomposition (CMD) activity. After H2 reduction at 750 °C, Fe-Al2 O3 prepared by means of a fusion method, containing 86.5 wt % FeAl2 O4 and 13.5 wt % Fe(0) , showed a stable CMD activity at 750 °C for as long as 10 h.


Subject(s)
Aluminum Oxide/chemistry , Iron/chemistry , Methane/chemistry , Catalysis , Temperature
5.
Langmuir ; 32(8): 2085-92, 2016 Mar 01.
Article in English | MEDLINE | ID: mdl-26854763

ABSTRACT

A new kind of organosilane (1,6-bis(diethyl(3-trimethoxysilylpropyl)ammonium) hexane bromide) with a gemini-type structure was prepared and used as a mesoporogen for the synthesis of hierarchical porous ZSM-5 zeolite. There are two quaternary ammonium centers along with double-hydrolyzable -RSi(OMe)3 fragments in the organosilane, which results in a strong interaction between this mesoporogen and silica-alumina gel. The organosilane can be easily incorporated into the ZSM-5 zeolite structure during the crystallization process, and it was finally removed by calcination, leading to secondary pores in ZSM-5. The synthesized ZSM-5 has been systematically studied by XRD, nitrogen adsorption, SEM, TEM, TG, and solid-state one-dimensional (1D) and two-dimensional (2D) NMR, which reveal information on its detailed structure. It has a hierarchical porosity system, which combines the intrinsic micropores coming from the crystalline structure and irregular mesopores created by the organosilane template. Moreover, the mesoposity including pore size and volume within ZSM-5 can be systematically tuned by changing the organosilane/TEOS ratio, which confirms that this organosilane has high flexibility of use as a template for the synthesis of hierarchical porous zeolite.

6.
ACS Appl Mater Interfaces ; 7(25): 13794-800, 2015 Jul 01.
Article in English | MEDLINE | ID: mdl-26024366

ABSTRACT

Although silicon nanoparticles dispersed in liquids are used in various applications ranging from biolabeling to hydrogen production, their reactivities with their solvents and their catalytic properties remain still unexplored. Here, we discovered that, because of their surface structures and mechanical strain, silicon nanoparticles react strongly with their solvents and may act as catalysts for the dehydrogenation, at room temperature, of secondary alcohols (e.g., isopropanol) into ketones and hydrogen. This catalytic reaction was monitored by gas chromatography, pH measurements, mass spectroscopy, and solid-state NMR. This discovery provides new understanding of the role played by silicon nanoparticles, and nanosilicon in general, in their reactivity in solvents in general, as well as being candidates in catalysis.

7.
Chem Commun (Camb) ; 50(82): 12348-51, 2014 Oct 21.
Article in English | MEDLINE | ID: mdl-25182752

ABSTRACT

A Zn-exchanged heteropolyacid supported onto silica (Zn-HPW/SiO2) activates methane at 25 °C into Zn-methyl. At higher temperatures and with CH4/O2 or CH4/CO2, it gives methanol and acetic acid respectively.

8.
Chem Commun (Camb) ; (32): 4889-91, 2009 Aug 28.
Article in English | MEDLINE | ID: mdl-19652815

ABSTRACT

Isolated cationic gold deposited on sulfated lanthanum oxide has been shown to exhibit remarkable stability opening a promising way of stabilising ionic gold for catalytic reactions.

9.
J Am Chem Soc ; 131(20): 6973-5, 2009 May 27.
Article in English | MEDLINE | ID: mdl-19405467

ABSTRACT

The active site in supported gold catalysts for the carbonylation of methanol has been identified as dimers/trimers of gold which are formed from large gold particles >10 nm in diameter. Methyl iodide was found to be critical for this dispersion process and to maintain the catalyst in the active form. This study also shows that it may be possible to redisperse gold catalysts, in general, after reaction.

SELECTION OF CITATIONS
SEARCH DETAIL
...