Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Med Genet A ; 188(4): 1293-1298, 2022 04.
Article in English | MEDLINE | ID: mdl-34971077

ABSTRACT

Congenital myasthenic syndromes (CMS) is a group of diseases that causes abnormalities at the neuromuscular junction owing to genetic anomalies. The pathogenic variant in ALG14 results in a severe pathological form of CMS causing end-plate acetylcholine receptor deficiency. Here, we report the cases of two siblings with CMS associated with a novel variant in ALG14. Immediately after birth, they showed hypotonia and multiple joint contractures with low Apgar scores. Ptosis, low-set ears, and high-arched palate were noted. Deep tendon reflexes were symmetrical. They showed worsening swallowing and respiratory problems; hence, nasal feeding and tracheotomy were performed. Cranial magnetic resonance imaging scans revealed delayed myelination and cerebral atrophy. Exome sequencing indicated that the siblings had novel compound heterozygous missense variants, c.590T>G (p.Val197Gly) and c.433G>A (p.Gly145Arg), in exon 4 of ALG14. Repetitive nerve stimulation test showed an abnormal decrease in compound muscle action potential. After treatment with pyridostigmine, the time off the respirator increased. Their epileptic seizures were well controlled by anti-epileptic drugs. Their clinical course is stable even now at the ages of 5 and 2 years, making them the longest reported survivors of a severe form of CMS with the ALG14 variant thus far.


Subject(s)
Myasthenic Syndromes, Congenital , Exons , Humans , Mutation , Myasthenic Syndromes, Congenital/complications , Myasthenic Syndromes, Congenital/diagnosis , Myasthenic Syndromes, Congenital/genetics , Siblings , Survivors , Exome Sequencing
2.
Mol Genet Metab Rep ; 29: 100800, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34522618

ABSTRACT

Biallelic 4-hydroxyphenylpyruvate dioxygenase-like protein (HPDL) variants were recently reported as a cause of progressive and incurable neurodegenerative diseases ranging from neonatal-onset leukoencephalopathy with severe neurodevelopmental delay to spastic paraplegia. Although the physiological function of HPDL remains unknown, its subcellular localization in the mitochondria has been reported. Here, we report a case of HPDL-related neurological disease that was clinically and neuroimaging compatible with Leigh syndrome, previously unreported, and was treated with a ketogenic diet.

SELECTION OF CITATIONS
SEARCH DETAIL
...