Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Publication year range
1.
PLoS One ; 12(12): e0189006, 2017.
Article in English | MEDLINE | ID: mdl-29211814

ABSTRACT

Transmembrane protein 168 (TMEM168) comprises 697 amino acid residues, including some putative transmembrane domains. It is reported that TMEM168 controls methamphetamine (METH) dependence in the nucleus accumbens (NAc) of mice. Moreover, a strong link between METH dependence-induced adaptive changes in the brain and mood disorders has been evaluated. In the present study, we investigated the effects of accumbal TMEM168 in a battery of behavioral paradigms. The adeno-associated virus (AAV) Tmem168 vector was injected into the NAc of C57BL/6J mice (NAc-TMEM mice). Subsequently, the accumbal TMEM168 mRNA was increased approximately by seven-fold when compared with the NAc-Mock mice (controls). The NAc-TMEM mice reported no change in the locomotor activity, cognitive ability, social interaction, and depression-like behaviors; however, TMEM168 overexpression enhanced anxiety in the elevated-plus maze and light/dark box test. The increased anxiety was reversed by pretreatment with the antianxiety drug diazepam (0.3 mg/kg i.p.). Moreover, the NAc-TMEM mice exhibited decreased prepulse inhibition (PPI) in the startle response test, and the induced schizophrenia-like behavior was reversed by pretreatment with the antipsychotic drug risperidone (0.01 mg/kg i.p.). Furthermore, accumbal TMEM168 overexpression decreased the basal levels of extracellular GABA in the NAc and the high K+ (100 mM)-stimulated GABA elevation; however, the total contents of GABA in the NAc remained unaffected. These results suggest that the TMEM168-regulated GABAergic neuronal system in the NAc might become a novel target while studying the etiology of anxiety and sensorimotor gating deficits.


Subject(s)
Membrane Proteins/metabolism , Nucleus Accumbens/metabolism , Sensory Gating , Animals , Behavior, Animal , Diazepam/pharmacology , Dopamine/metabolism , Glutamic Acid/metabolism , Male , Membrane Proteins/genetics , Mice , Mice, Inbred C57BL , RNA, Messenger/genetics , Real-Time Polymerase Chain Reaction , Risperidone/pharmacology , Sensory Gating/drug effects , Serotonin/metabolism , gamma-Aminobutyric Acid/metabolism
2.
Sci Rep ; 7(1): 13084, 2017 10 12.
Article in English | MEDLINE | ID: mdl-29026117

ABSTRACT

Chronic exposure to methamphetamine causes adaptive changes in brain, which underlie dependence symptoms. We have found that the transmembrane protein 168 (TMEM168) is overexpressed in the nucleus accumbens of mice upon repeated methamphetamine administration. Here, we firstly demonstrate the inhibitory effect of TMEM168 on methamphetamine-induced behavioral changes in mice, and attempt to elucidate the mechanism of this inhibition. We overexpressed TMEM168 in the nucleus accumbens of mice by using an adeno-associated virus vector (NAc-TMEM mice). Methamphetamine-induced hyperlocomotion and conditioned place preference were attenuated in NAc-TMEM mice. Additionally, methamphetamine-induced extracellular dopamine elevation was suppressed in the nucleus accumbens of NAc-TMEM mice. Next, we identified extracellular matrix protein osteopontin as an interacting partner of TMEM168, by conducting immunoprecipitation in cultured COS-7 cells. TMEM168 overexpression in COS-7 cells induced the enhancement of extracellular and intracellular osteopontin. Similarly, osteopontin enhancement was also observed in the nucleus accumbens of NAc-TMEM mice, in in vivo studies. Furthermore, the infusion of osteopontin proteins into the nucleus accumbens of mice was found to inhibit methamphetamine-induced hyperlocomotion and conditioned place preference. Our studies suggest that the TMEM168-regulated osteopontin system is a novel target pathway for the therapy of methamphetamine dependence, via regulating the dopaminergic function in the nucleus accumbens.


Subject(s)
Locomotion/drug effects , Membrane Proteins/metabolism , Methamphetamine/pharmacology , Osteopontin/metabolism , Animals , COS Cells , Chlorocebus aethiops , In Situ Hybridization , Male , Mice , Mice, Inbred C57BL , Reverse Transcriptase Polymerase Chain Reaction
3.
Article in Japanese | MEDLINE | ID: mdl-25069253

ABSTRACT

Various molecules are involved in drug addiction induced by drugs of abuse. Therefore, the mechanism of drug addiction is still not clear, and it has been a difficulty in the development of preventive and curative drugs for drug dependence. We tried to identify the molecules associated with drug dependence, and found three molecules including shati/nat81. Recently, it has been demonstrated that the substrate for shati/nat81 is aspaltate and shati/nat8l biosynthesizes N-acetylaspartate, which exists abundantly in the mammalian brain. In this study, we investigated the physiological function of shati/nat81 and the role of shati/nat81 in drug dependence. The overexpression of shati/nat81 in the dorsal striatum of mice led to social abnormality and depression-like behavior, and worsened a part of the motor dysfunction induced by Ca2+ channel agonist BAY-K 8644. The overexpression of shati/nat81 in the nucleus accumbens of mice inhibited methamphetamine-induced behavioral and biochemical abnormalities. These findings suggest that the shati/nat81-associated system could play a role in the regulation of mental activity and motor action, and be a new target in the development of therapeutic drugs for drug dependence.


Subject(s)
Acetyltransferases/metabolism , Substance-Related Disorders/metabolism , Animals , Aspartic Acid/analogs & derivatives , Aspartic Acid/metabolism , Behavior, Animal/drug effects , Brain/metabolism , Brain/physiopathology , Humans , Methamphetamine/pharmacology , Substance-Related Disorders/drug therapy , Substance-Related Disorders/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL
...