Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
2.
J Phys Condens Matter ; 32(35): 35LT01, 2020 Apr 23.
Article in English | MEDLINE | ID: mdl-32325450

ABSTRACT

We use micromagnetic simulations based on the stochastic Landau-Lifshitz-Gilbert equation to calculate dynamic magnetic hysteresis loops at finite temperature that are invariant with simulation cell size. As a test case, we simulate a magnetite nanorod, the building block of magnetic nanoparticles that have been employed in preclinical studies of hyperthermia. With the goal to effectively simulate loops for large iron-oxide-based systems at relatively slow sweep rates on the order of 1 Oe ns-1 or less, we modify and employ a previously derived renormalization group approach for coarse-graining (Grinstein and Koch 2003 Phys. Rev. Lett. 20 207201). The scaling algorithm is shown to produce nearly identical loops over several decades in the model cell volume. We also demonstrate sweep-rate scaling involving the Gilbert damping parameter that allows orders of magnitude speed-up of the loop calculations.

3.
J Chem Phys ; 124(20): 204509, 2006 May 28.
Article in English | MEDLINE | ID: mdl-16774355

ABSTRACT

We present a numerical study of the statistical properties of the potential energy landscape of a simple model for strong network-forming liquids. The model is a system of spherical particles interacting through a square-well potential, with an additional constraint that limits the maximum number of bonds Nmax per particle. Extensive simulations have been carried out as a function of temperature, packing fraction, and Nmax. The dynamics of this model are characterized by Arrhenius temperature dependence of the transport coefficients and by nearly exponential relaxation of dynamic correlators, i.e., features defining strong glass-forming liquids. This model has two important features: (i) Landscape basins can be associated with bonding patterns. (ii) The configurational volume of the basin can be evaluated in a formally exact way, and numerically with an arbitrary precision. These features allow us to evaluate the number of different topologies the bonding pattern can adopt. We find that the number of fully bonded configurations, i.e., configurations in which all particles are bonded to Nmax neighbors, is extensive, suggesting that the configurational entropy of the low temperature fluid is finite. We also evaluate the energy dependence of the configurational entropy close to the fully bonded state and show that it follows a logarithmic functional form, different from the quadratic dependence characterizing fragile liquids. We suggest that the presence of a discrete energy scale, provided by the particle bonds, and the intrinsic degeneracy of fully bonded disordered networks differentiates strong from fragile behavior.

4.
J Chem Phys ; 124(12): 124908, 2006 Mar 28.
Article in English | MEDLINE | ID: mdl-16599726

ABSTRACT

We numerically study a simple model for thermoreversible colloidal gelation in which particles can form reversible bonds with a predefined maximum number of neighbors. We focus on three and four maximally coordinated particles, since in these two cases the low valency makes it possible to probe, in equilibrium, slow dynamics down to very low temperatures T. By studying a large region of T and packing fraction phi we are able to estimate both the location of the liquid-gas phase separation spinodal and the locus of dynamic arrest, where the system is trapped in a disordered nonergodic state. We find that there are two distinct arrest lines for the system: a glass line at high packing fraction, and a gel line at low phi and T. The former is rather vertical (phi controlled), while the latter is rather horizontal (T controlled) in the phi-T plane. Dynamics on approaching the glass line along isotherms exhibit a power-law dependence on phi, while dynamics along isochores follow an activated (Arrhenius) dependence. The gel has clearly distinct properties from those of both a repulsive and an attractive glass. A gel to glass crossover occurs in a fairly narrow range in phi along low-T isotherms, seen most strikingly in the behavior of the nonergodicity factor. Interestingly, we detect the presence of anomalous dynamics, such as subdiffusive behavior for the mean squared displacement and logarithmic decay for the density correlation functions in the region where the gel dynamics interferes with the glass dynamics.

5.
Phys Rev E Stat Nonlin Soft Matter Phys ; 73(1 Pt 1): 011503, 2006 Jan.
Article in English | MEDLINE | ID: mdl-16486150

ABSTRACT

We present a simple off-lattice hard-disk model that exhibits glassy dynamics. The inherent structures are enumerated exactly, transitions between metabasins are well understood, and the particle configurations that act to facilitate dynamics are easily identified. The model readily maps to a coarse grained dynamic facilitation description.

6.
Phys Rev Lett ; 95(15): 157802, 2005 Oct 07.
Article in English | MEDLINE | ID: mdl-16241763

ABSTRACT

We calculate the statistical properties of the energy landscape of a minimal model for strong network-forming liquids. Dynamic and thermodynamic properties of this model can be computed with arbitrary precision even at low temperatures. A degenerate disordered ground state and logarithmic statistics for the local minima energy distribution are the landscape signatures of strong liquid behavior. Differences from fragile liquid properties are attributed to the presence of a discrete energy scale, provided by the particle bonds, and to the intrinsic degeneracy of topologically disordered networks.


Subject(s)
Complex Mixtures/chemistry , Energy Transfer , Models, Chemical , Solutions/chemistry , Complex Mixtures/analysis , Computer Simulation , Phase Transition , Solutions/analysis , Temperature
7.
Phys Rev Lett ; 94(21): 218301, 2005 Jun 03.
Article in English | MEDLINE | ID: mdl-16090355

ABSTRACT

We report a numerical study, covering a wide range of packing fraction Phi and temperature T, for a system of particles interacting via a square well potential supplemented by an additional constraint on the maximum number n(max) of bonded interactions. We show that, when n(max)<6, the liquid-gas coexistence region shrinks, giving access to regions of low Phi where dynamics can be followed down to low T without an intervening phase separation. We characterize these arrested states at low densities (gel states) in terms of structure and dynamical slowing down, pointing out features which are very different from the standard glassy states observed at high Phi values.


Subject(s)
Biophysics/methods , Colloids/chemistry , Gels , Models, Theoretical , Temperature , Viscosity
8.
Phys Rev E Stat Nonlin Soft Matter Phys ; 70(4 Pt 1): 041401, 2004 Oct.
Article in English | MEDLINE | ID: mdl-15600402

ABSTRACT

We perform molecular dynamics simulations of short-range attractive colloid particles modeled by a narrow (3% of the hard sphere diameter) square well potential of unit depth. We compare the dynamics of systems with the same thermodynamics but different bond lifetimes, by adding to the square well potential a thin barrier at the edge of the attractive well. For permanent bonds, the relaxation time tau diverges as the packing fraction phi approaches a threshold related to percolation, while for short-lived bonds, the phi dependence of tau is more typical of a glassy system. At intermediate bond lifetimes, the phi dependence of tau is driven by percolation at low phi , but then crosses over to glassy behavior at higher phi . We also study the wave vector dependence of the percolation dynamics.

9.
Nature ; 412(6846): 514-7, 2001 Aug 02.
Article in English | MEDLINE | ID: mdl-11484046

ABSTRACT

Liquid silica is the archetypal glass former, and compounds based on silica are ubiquitous as natural and man-made amorphous materials. Liquid silica is also the extreme case of a 'strong' liquid, in that the variation of viscosity with temperature closely follows the Arrhenius law as the liquid is cooled toward its glass transition temperature. In contrast, most liquids are to some degree 'fragile', showing significantly faster increases in their viscosity as the glass transition temperature is approached. Recent studies have demonstrated the controlling influence of the potential energy hypersurface (or 'energy landscape') of the liquid on the transport properties near the glass transition. But the origin of strong liquid behaviour in terms of the energy landscape has not yet been resolved. Here we study the static and dynamic properties of liquid silica over a wide range of temperature and density using computer simulations. The results reveal a change in the energy landscape with decreasing temperature, which underlies a transition from a fragile liquid at high temperature to a strong liquid at low temperature. We also show that a specific heat anomaly is associated with this fragile-to-strong transition, and suggest that this anomaly is related to the polyamorphic behaviour of amorphous solid silica.

10.
Phys Rev E Stat Nonlin Soft Matter Phys ; 63(1 Pt 1): 011202, 2001 Jan.
Article in English | MEDLINE | ID: mdl-11304241

ABSTRACT

We conduct extensive molecular dynamics computer simulations of two models for liquid silica [the model of Woodcock, Angell and Cheeseman, J. Phys. Chem. 65, 1565 (1976); and that of van Beest, Kramer, and van Santen, Phys. Rev. Lett. 64, 1955 (1990)] to determine their thermodynamic properties at low temperature T across a wide density range. We find for both models a wide range of states in which isochores of the potential energy U are a linear function of T(3/5), as recently proposed for simple liquids [Rosenfeld and P. Tarazona, Mol. Phys. 95, 141 (1998)]. We exploit this behavior to fit an accurate equation of state to our thermodynamic data. Extrapolation of this equation of state to low T predicts the occurrence of a liquid-liquid phase transition for both models. We conduct simulations in the region of the predicted phase transition, and confirm its existence by direct observation of phase separating droplets of atoms with distinct local density and coordination environments.

SELECTION OF CITATIONS
SEARCH DETAIL
...