Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters











Database
Language
Publication year range
1.
Annu Int Conf IEEE Eng Med Biol Soc ; 2019: 2027-2031, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31946299

ABSTRACT

Intra-retinal cysts (IRCs) are significant in detecting several ocular and retinal pathologies. Segmentation and quantification of IRCs from optical coherence tomography (OCT) scans is a challenging task due to present of speckle noise and scan intensity variations across the vendors. This work proposes a convolutional neural network (CNN) model with an encoder-decoder pair architecture for IRC segmentation across different cross-vendor OCT scans. Since deep CNN models have high computational complexity due to a large number of parameters, the proposed method of depthwise separable convolutional filters aids model generalizability and prevents model over-fitting. Also, the swish activation function is employed to prevent the vanishing gradient problem. The optima cyst segmentation challenge (OCSC) dataset with four different vendor OCT device scans is used to evaluate the proposed model. Our model achieves a mean Dice score of 0.74 and mean recall/precision rate of 0.72/0.82 across different imaging vendors and it outperforms existing algorithms on the OCSC dataset.


Subject(s)
Cysts , Neural Networks, Computer , Retinal Diseases , Cysts/diagnostic imaging , Humans , Retina , Retinal Diseases/diagnostic imaging , Tomography, Optical Coherence
SELECTION OF CITATIONS
SEARCH DETAIL