Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Acta Paediatr ; 107(10): 1702-1709, 2018 10.
Article in English | MEDLINE | ID: mdl-29897141

ABSTRACT

Continuous monitoring of electroencephalography (EEG), with a focus on amplitude-integrated EEG (aEEG), has been used in neonatal intensive care for decades. A number of systems have been suggested for describing and quantifying aEEG patterns. Extensive full-montage EEG monitoring is used in specialised intensive care units. The American Clinical Neurophysiology Society published recommendations for defining and reporting EEG findings in critically ill adults and infants. Swedish neonatologists and clinical neurophysiologists collaborated to optimise simplified neonatal continuous aEEG and EEG recordings based on these American documents. CONCLUSION: This paper describes the Swedish consensus document produced by those meetings.


Subject(s)
Electroencephalography/methods , Neonatology/methods , Neurophysiology/methods , Humans , Infant, Newborn , Sweden
2.
Neurosurgery ; 60(1): 198-201; discussion 201-2, 2007 Jan.
Article in English | MEDLINE | ID: mdl-17228269

ABSTRACT

The renaissance of stereotactic functional neurosurgery has resulted in increased interest in its origins. Twenty articles concerning this field trace the history back to a paper published in 1873 by Dittmar: "Uber die Lage des sogenannten Gefaesszentrums in der Medulla oblongata" [On the location of the so-called vasomotor center in the medulla oblongata]. Few facts are presented. But, taken together, the impression given by the secondary sources is that Dittmar, in 1873, presented a guiding device for localization of intracranial structures for the positioning of electrodes/blades in the medulla oblongata in rats. Of the publications that cite Dittmar's original article as their only quoted source, half did not specify the inserted object and the animal of the experiment. The remaining articles reported either that the introduced object was an electrode or that the experiments were performed on rats. Dittmar's original article, however, did not report use of his apparatus for insertion of electrodes, nor did he use rats. All experiments were performed by making incisions in the medulla oblongata in rabbits. Dittmar's apparatus was constructed to allow more precision when performing incisions in the medulla oblongata than could be obtained performing incisions freehand. The incision point was chosen and the blade introduced with direct visual guidance. This has been described as "spatial localization of intracranial structures," "a special targeting instrument," or simply, "a guiding device." In our opinion, it can most properly be classified as a supportive arm.


Subject(s)
Stereotaxic Techniques/history , Animals , History, 19th Century , History, 20th Century , Medulla Oblongata/surgery , Rabbits , Rats
3.
Brain ; 129(Pt 3): 791-808, 2006 Mar.
Article in English | MEDLINE | ID: mdl-16364955

ABSTRACT

Clinical recovery after stroke can be significant and has been attributed to plastic reorganization and recruitment of novel areas previously not engaged in a given task. As equivocal results have been reported in studies using single imaging or electrophysiological methods, here we applied an integrative multimodal approach to a group of well-recovered chronic stroke patients (n = 11; aged 50-81 years) with left capsular lesions. Focal activation during recovered hand movements was assessed with EEG spectral analysis and H2(15)O-PET with EMG monitoring, cortico-cortical connectivity with EEG coherence analysis (cortico-cortical coherence) and corticospinal connectivity with transcranial magnetic stimulation (TMS). As seen from comparisons with age-matched controls, our patients showed enhanced recruitment of the lateral premotor cortex of the lesioned hemisphere [Brodmann area (BA) 6], lateral premotor and to a lesser extent primary sensorimotor and parietal cortex of the contralesional hemisphere (CON-H; BA 4 and superior parietal lobule) and left cerebellum (patients versus controls, Z > 3.09). EEG coherence analysis showed that after stroke cortico-cortical connections were reduced in the stroke hemisphere but relatively increased in the CON-H (ANOVA, contrast analysis, P < 0.05), suggesting a shift of functional connectivity towards the CON-H. Nevertheless, fast conducting corticospinal transmission originated exclusively from the lesioned hemisphere. No direct ipsilateral motor evoked potentials (MEPs) could be elicited with TMS over the contralesional primary motor cortex (iM1) in stroke patients. We conclude that (i) effective recovery is based on enhanced utilization of ipsi- and contralesional resources, (ii) basic corticospinal commands arise from the lesioned hemisphere without recruitment of ('latent') uncrossed corticospinal tract fibres and (iii) increased contralesional activity probably facilitates control of recovered motor function by operating at a higher-order processing level, similar to but not identical with the extended network concerned with complex movements in healthy subjects.


Subject(s)
Motor Cortex/physiopathology , Neuronal Plasticity , Stroke/physiopathology , Aged , Aged, 80 and over , Brain Mapping/methods , Cerebrovascular Circulation , Chronic Disease , Electroencephalography , Evoked Potentials, Motor , Female , Hand/physiopathology , Humans , Male , Middle Aged , Motor Cortex/pathology , Movement , Positron-Emission Tomography , Stroke/pathology , Stroke Rehabilitation , Transcranial Magnetic Stimulation
4.
Brain ; 126(Pt 8): 1883-94, 2003 Aug.
Article in English | MEDLINE | ID: mdl-12805105

ABSTRACT

Sensory abnormalities have been reported in Parkinson's disease and may contribute to the motor deficits. Peripheral sensory stimulation inhibits the motor cortex, and the effects depend on the interstimulus interval (ISI) between the sensory stimulus and transcranial magnetic stimulation (TMS) to the motor cortex. Short latency afferent inhibition (SAI) occurs at an ISI of approximately 20 ms, and long latency afferent inhibition (LAI) at an ISI of approximately 200 ms. We studied SAI and LAI in 10 Parkinson's disease patients with the aim of assessing whether sensorimotor processing is altered in Parkinson's disease. Patients were studied on and off medication, and the findings were compared with 10 age-matched controls. Median nerve and middle finger stimulation were delivered 20-600 ms before TMS to the contralateral motor cortex. The motor evoked potentials were recorded from the relaxed first dorsal interosseous (FDI) muscle. SAI was normal in Parkinson's disease patients off dopaminergic medications, but it was reduced on the more affected side in Parkinson's disease patients on medication. LAI was reduced in Parkinson's disease patients compared with controls independent of their medication status. LAI reduced long interval intracortical inhibition in normal subjects but not in Parkinson's disease patients. The different results for SAI and LAI indicate that it is likely that separate mechanisms mediate these two forms of afferent inhibition. SAI probably represents the direct interaction of a sensory signal with the motor cortex. This pathway is unaffected by Parkinson's disease but is altered by dopaminergic medication in Parkinson's disease patients and may contribute to the side effects of dopaminergic drugs. LAI probably involves other pathways such as the basal ganglia or cortical association areas. This defective sensorimotor integration may be a non-dopaminergic manifestation of Parkinson's disease.


Subject(s)
Neural Inhibition , Parkinson Disease/physiopathology , Adult , Afferent Pathways/physiopathology , Aged , Electric Stimulation/methods , Female , Fingers/innervation , Humans , Male , Median Nerve/physiopathology , Middle Aged , Motor Cortex/physiopathology , Reaction Time
5.
Clin Neurophysiol ; 114(5): 938-44, 2003 May.
Article in English | MEDLINE | ID: mdl-12738441

ABSTRACT

BACKGROUND: The transcranial magnetic stimulation (TMS)-induced contralateral silent period (CSP) refers to a period of interruption of voluntary muscle activity measured in tonically active muscles. The length of the CSP is generally interpreted to reflect cortical inhibition. The determination of the return of voluntary motor activity is typically accomplished via visual inspection of the electromyography (EMG) waveform and may be subject to inaccuracy on the part of the rater. OBJECTIVE: To present and evaluate an automated method (AM) to determine the CSP. METHODS: The CSP of 11 healthy controls was recorded using stimulus intensities 20 and 50% above the resting motor threshold (RMT). The mean CSP duration obtained by the two raters using visual inspection and our automated approach were compared. RESULTS: The interclass correlation coefficient (ICC) between the two raters and the AM was 0.99 at 150% of RMT and was 0.97 at 120% of RMT. The level of pre-stimulus EMG amplitude and sampling rate did not affect agreement between the AM and more conventional visually guided methods. CONCLUSIONS: Our study demonstrates that this AM is a simple, objective and reliable approach for CSP determination. SIGNIFICANCE: The CSP is an important neurophysiological measure of cortical inhibition and its determination by our AM provides a more objective and automated approach compared to visually guided methods.


Subject(s)
Automation/methods , Cerebral Cortex/physiology , Functional Laterality/physiology , Transcranial Magnetic Stimulation , Adult , Aged , Automation/instrumentation , Electromyography/methods , Evoked Potentials, Motor/physiology , Female , Humans , Male , Middle Aged
6.
J Physiol ; 544(2): 617-29, 2002 10 15.
Article in English | MEDLINE | ID: mdl-12381831

ABSTRACT

Cortical inhibitory systems play an important role in motor output. The motor cortex can be inhibited by intracortical mechanisms and by peripheral sensory inputs. We examined whether cortical inhibition from peripheral sensory input is mediated through previously identified intracortical inhibitory systems and how these inhibitory systems interact. Two types of intracortical inhibition were assessed by paired-pulse transcranial magnetic stimulation (TMS). Short-interval intracortical inhibition (SICI) was determined with a subthreshold conditioning stimulus (CS) followed by a test stimulus 2 ms later and long-interval intracortical inhibition (LICI) with suprathreshold conditioning and test stimuli 100 ms apart. Cortical inhibition from peripheral sensory input was induced by median nerve stimulation (MNS) of the right hand and followed by a suprathreshold TMS over the left motor cortex 200 ms later. The first set of experiments tested the effects of different test stimulus intensities on SICI, LICI and cortical inhibition induced by median nerve stimulation (MNSI). With higher test stimulus intensities, LICI and MNSI decreased whereas SICI showed a trend towards an increase. The extent of SICI, LICI and MNSI did not correlate. The second experiment assessed the interaction between MNSI and LICI. The results of applying MNSI and LICI simultaneously were compared with MNSI and LICI alone. MNSI was virtually abolished in the presence of LICI and LICI was also significantly decreased in the presence of MNSI. Thus, the effects of MNSI and LICI when applied together were much less than their expected additive effects when applied alone. The degree of interaction between MNSI and LICI was related to the combined strength of MNSI and LICI but not to the strength of LICI alone. The third experiment investigated the interaction between SICI and MNSI. MNSI and SICI were applied together and the results were compared with MNSI and SICI alone. SICI remained unchanged in the presence of MNSI. We conclude that MNSI is mediated by circuits distinct from those mediating LICI or SICI. The MNSI circuits seem to have an inhibitory interaction with the LICI circuits, whereas the SICI and MNSI circuits do not seem to interact.


Subject(s)
Cerebral Cortex/physiology , Neural Inhibition/physiology , Sensation/physiology , Adult , Electric Stimulation/methods , Evoked Potentials, Motor , Female , Humans , Magnetics , Male , Median Nerve/physiology , Middle Aged , Motor Cortex/physiology , Reaction Time
SELECTION OF CITATIONS
SEARCH DETAIL
...