Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-25353911

ABSTRACT

We discuss the application of complex-plane Gauss-Laguerre quadrature (CGLQ) to efficiently evaluate two-dimensional Fourier integrals arising as the solution to electromagnetic fields radiated by elementary dipole antennas embedded within planar-layered media exhibiting arbitrary material parameters. More specifically, we apply CGLQ to the long-standing problem of rapidly and efficiently evaluating the semi-infinite length "tails" of the Fourier integral path while simultaneously and robustly guaranteeing absolute, exponential convergence of the field solution despite diversity in the doubly anisotropic layer parameters, source type (i.e., electric or equivalent magnetic dipole), source orientation, observed field type (magnetic or electric), (nonzero) frequency, and (nonzero) source-observer separation geometry. The proposed algorithm exhibits robustness despite unique challenges arising for the fast evaluation of such two-dimensional integrals. Herein we develop the mathematical treatment to rigorously evaluate the tail integrals using CGLQ, as well as discuss and address the specific issues posed to the CGLQ method when anisotropic, layered media are present. To empirically demonstrate the CGLQ algorithm's computational efficiency, versatility, and accuracy, we perform a convergence analysis along with two case studies related to modeling of electromagnetic resistivity tools employed in geophysical prospection of layered, anisotropic Earth media and validating the ability of isoimpedance substrates to enhance the radiation performance of planar antennas placed in close proximity to metallic ground planes.


Subject(s)
Algorithms , Electromagnetic Fields , Models, Theoretical , Numerical Analysis, Computer-Assisted , Radiometry/methods , Anisotropy , Computer Simulation
2.
Article in English | MEDLINE | ID: mdl-24580365

ABSTRACT

We develop a general-purpose formulation, based on two-dimensional spectral integrals, for computing electromagnetic fields produced by arbitrarily oriented dipoles in planar-stratified environments, where each layer may exhibit arbitrary and independent anisotropy in both its (complex) permittivity and permeability tensors. Among the salient features of our formulation are (i) computation of eigenmodes (characteristic plane waves) supported in arbitrarily anisotropic media in a numerically robust fashion, (ii) implementation of an hp-adaptive refinement for the numerical integration to evaluate the radiation and weakly evanescent spectra contributions, and (iii) development of an adaptive extension of an integral convergence acceleration technique to compute the strongly evanescent spectrum contribution. While other semianalytic techniques exist to solve this problem, none have full applicability to media exhibiting arbitrary double anisotropies in each layer, where one must account for the whole range of possible phenomena (e.g., mode coupling at interfaces and nonreciprocal mode propagation). Brute-force numerical methods can tackle this problem but only at a much higher computational cost. The present formulation provides an efficient and robust technique for field computation in arbitrary planar-stratified environments. We demonstrate the formulation for a number of problems related to geophysical exploration.

3.
Article in English | MEDLINE | ID: mdl-25615217

ABSTRACT

We discuss the numerically stable, spectral-domain computation and extraction of the scattered electromagnetic field excited by distributed sources embedded in planar-layered environments, where each layer may exhibit arbitrary and independent electrical and magnetic anisotropic response and loss profiles. This stands in contrast to many standard spectral-domain algorithms that are restricted to computing the fields radiated by Hertzian dipole sources in planar-layered environments where the media possess azimuthal-symmetric material tensors (i.e., isotropic, and certain classes of uniaxial, media). Although computing the scattered field, particularly when due to distributed sources, appears (from the analytical perspective, at least) relatively straightforward, different procedures within the computation chain, if not treated carefully, are inherently susceptible to numerical instabilities and (or) accuracy limitations due to the potential manifestation of numerically overflown and (or) numerically unbalanced terms entering the chain. Therefore, primary emphasis herein is given to effecting these tasks in a numerically stable and robust manner for all ranges of physical parameters. After discussing the causes behind, and means to mitigate, these sources of numerical instability, we validate the algorithm's performance against closed-form solutions. Finally, we validate and illustrate the applicability of the proposed algorithm in case studies concerning active remote sensing of marine hydrocarbon reserves embedded deep within lossy, planar-layered media.

SELECTION OF CITATIONS
SEARCH DETAIL
...