Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
RSC Adv ; 8(36): 20287-20294, 2018 May 30.
Article in English | MEDLINE | ID: mdl-35541642

ABSTRACT

In this article, we present a novel synthesis of mesoporous SiO2/Ag nanostructures for dye (methylene blue) adsorption and surface plasmon mediated photocatalysis. Mesoporous SiO2 nanoparticles with a pore size of 3.2 nm were synthesized using cetyltrimethylammonium bromide as a structure directing agent and functionalized with (3-aminopropyl)trimethoxysilane to introduce amine groups. The adsorption behavior of non-porous SiO2 nanoparticles was compared with that of the mesoporous silica nanoparticles. The large surface area and higher porosity of mesoporous SiO2 facilitated better adsorption of the dye as compared to the non-porous silica. Ag decorated SiO2 nanoparticles were synthesized by attaching silver (Ag) nanoparticles of different morphologies, i.e. spherical and triangular, on amine functionalized silica. The photocatalytic activity of the mesoporous SiO2/Ag was compared with that of non-porous SiO2/Ag nanoparticles and pristine Ag nanoparticles. Mesoporous SiO2 nanoparticles (k d = 31.3 × 10-3 g mg-1 min-1) showed remarkable improvement in the rate of degradation of methylene blue as compared to non-porous SiO2 (k d = 25.1 × 10-3 g mg-1 min-1) and pristine Ag nanoparticles (k d = 19.3 × 10-3 g mg-1 min-1). Blue Ag nanoparticles, owing to their better charge carrier generation and enhanced surface plasmon resonance, exhibited superior photocatalysis performance as compared to yellow Ag nanoparticles in all nanostructures.

2.
Sci Rep ; 7(1): 537, 2017 04 03.
Article in English | MEDLINE | ID: mdl-28373705

ABSTRACT

This work reports first electrochemical preparation of exceptionally biocompatible, highly crystalline, and well exfoliated nitrogen doped graphene nanosheets (eNGS) from carbon nanosheets for the development of mighty platforms in the field of modern biosensing and other biological applications for human welfare. eNGS displayed exceptional biocompatibility. Administration of the as-synthesized eNGS to rat models did not lead to any significant deviation or inimical consequences in its functional observation battery (FOB) tests, GSH levels or the histology of the vital organs of the rat models. The pictomicrographs of myocytes nuclei and myofibrillar for heart, hippocampus (CA1) section for brain, central vein, and hepatocytes for liver and parenchyma, tubules and glomeruli for kidney also remained unaffected. Moreover, the resultant nanoelectrocatalyst displayed enhanced electrochemical performance towards real-time sensing of dopamine (DA) from human urine sample in the presence of interferences, such as ascorbic acid (AA) and uric acid (UA).


Subject(s)
Biocompatible Materials/chemistry , Graphite/chemistry , Nanostructures/chemistry , Nitrogen/chemistry , Animals , Electrochemical Techniques , Electrodes , Glutathione/metabolism , Materials Testing , Nanostructures/ultrastructure , Oxidative Stress , Rats , Spectroscopy, Fourier Transform Infrared , X-Ray Diffraction
3.
Int J Biol Macromol ; 78: 417-28, 2015.
Article in English | MEDLINE | ID: mdl-25900857

ABSTRACT

Here we have used five non-fluorinated cosolvents (acetonitrile, ethanol, methanol, sec-butanol and ter-butanol) at increasing concentrations and analyzed their aggregation inducing behavior on interaction with conalbumin (CA). The aggregates were identified as amorphous by performing spectroscopic experiments like circular dichroism and dye binding assay. The amorphous aggregate contains rich ß-sheet content, show insignificant increment in Thioflavin-T (ThT) fluorescence intensity but strong 1-anilino-8-napthalene sulfonate (ANS) binding with enhanced fluorescence intensity. We also performed transmission electron microscope (TEM) and scanning electron microscope (SEM) imaging of the aggregates which made the result more informative. The morphology appeared on TEM imaging shows aggregates but there is no exhibition of fibril formation, as was observed in amyloid induced by 2,2,2-trifuoroethanol (TFE) and 1,1,1,3,3,3-hexafluoro-propan-2-ol (HFIP). SEM imaging also gives the similar results indicating the formation of amorphous aggregates. Web based tools (Waltz and AGGRESCAN) predicted aggregation prone regions in CA which are accountable for the aggregation.


Subject(s)
Conalbumin/chemistry , Metalloproteases/chemistry , Solvents/chemistry , Animals , Benzothiazoles , Kinetics , Models, Molecular , Protein Aggregates/drug effects , Protein Binding , Protein Conformation , Solvents/pharmacology , Spectrum Analysis/methods , Thiazoles/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...