Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
J Hazard Mater ; 467: 133687, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38325101

ABSTRACT

This study investigates the influence of arsenic (As) and iron (Fe) on the molecular aspects of rice plants. The mRNA-abundance of As (OsLsi, OsPHT, OsNRAMP1, OsABCC1) and Fe (OsIRT, OsNRAMP1, OsYSL, OsFRDL1, OsVIT2, OsSAMS1, OsNAS, OsNAAT1, OsDMAS1, OsTOM1, OsFER) related genes has been observed in 12-d old As and Fe impacted rice varieties. Analyses of phytosiderophores synthesis and Fe-uptake genes affirm the existence of specialized Fe-uptake strategies in rice with varieties PB-1 and Varsha favouring strategy I and II, respectively. Expression of OsNAS3, OsVIT2, OsFER and OsABCC1 indicated PB-1's tolerance towards Fe and As. Analysis of mitogen-activated protein kinase cascade members (OsMKK3, OsMKK4, OsMKK6, OsMPK3, OsMPK4, OsMPK7, and OsMPK14) revealed their importance in the fine adjustment of As/Fe in the rice system. A conditional network map was generated based on the gene expression pattern that unfolded the differential dynamics of both rice varieties. The mating based split ubiquitin system determined the interaction of OsIRT1 with OsMPK3, and OsLsi1 with both OsMPK3 and OsMPK4. In-silico tools also confirmed the binding affinities of OsARM1 with OsLsi1, OsMPK3 and OsMPK4, and of OsIDEF1/OsIRO2 with OsIRT1 and OsMPK3, supporting our hypothesis that OsARM1, OsIDEF1, OsIRO2 were active in the connections discovered by mbSUS.


Subject(s)
Arsenic , Oryza , Iron/metabolism , Mitogen-Activated Protein Kinases/metabolism , Oryza/genetics , Oryza/metabolism , Arsenic/metabolism , Membrane Transport Proteins/metabolism
2.
Environ Monit Assess ; 196(2): 119, 2024 Jan 06.
Article in English | MEDLINE | ID: mdl-38183498

ABSTRACT

Arsenic (As) toxicity is an escalating problem; however, information about the metabolic events controlling the varied pattern of As accumulation in rice genotypes within their natural environment is still lacking. The present study is thus an advancement in unravelling the response of such rice genotypes. Soil-water-rice samples were analyzed for As accumulation using ICP-MS. Furthermore, we implemented metabolomics through LC-MS/MS and UHPLC to identify metabolic signatures regulating As content by observing the metalloid's composition in rice agrosystem. Results showed that rice genotypes differed significantly in their levels of metabolites, with Mini mansoori and Pioneer having the highest levels. Mini mansoori contained least As which might have been regulated by Ala, Ser, Glu, Phe, Asn, His, Ile, Lys, Gln, Trp, Tyr, chlorogenic, p-coumaric, trans-ferulic, rutin, morin, naringenin, kampferol, and myricetin, while Asp, Arg, Met, syringic, epigalocatechin, and apigenin contributed to the greater As acclimatization ability of Pioneer. Multivariate tools separated the rice genotypes into two major clusters: Pioneer-Mini mansoori and Damini-Sampoorna-Chintu. KEGG identified three major metabolic pathways (aminoacyl-tRNA, phenylpropanoid, and secondary metabolites biosynthesis route) linked with As tolerance and adaptation mechanisms in rice. Overall, these two genotypes symbolize their As hostile and accommodating attitudes probably due to the accumulated metabolites and the physicochemical attributes of the soil-water. Thus, thorough understanding of the metabolic reactions to As may facilitate the emergence of As tolerant/resilient genotypes. This will aid in the selection of molecular markers to cultivate healthier rice genotypes in As-contaminated areas.


Subject(s)
Arsenic , Oryza , Oryza/genetics , Arsenic/toxicity , Chromatography, Liquid , Tandem Mass Spectrometry , Environmental Monitoring , Genotype , Soil , Water
3.
BMJ Case Rep ; 16(11)2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37914176

ABSTRACT

A rare case of ventricular tachycardia caused by extrapulmonary tuberculosis has been followed up. Automatic implantable cardioverter defibrillator implantation was done at the time of presentation. Following this, the patient is clinically well without any episodes of ventricular tachycardia and is considered for an implantable cardioverter defibrillator explantation.


Subject(s)
Defibrillators, Implantable , Myocarditis , Tachycardia, Ventricular , Humans , Follow-Up Studies , Myocarditis/complications , Myocarditis/therapy , Tachycardia, Ventricular/etiology , Tachycardia, Ventricular/therapy , Arrhythmias, Cardiac/complications , Electric Countershock/adverse effects , Defibrillators, Implantable/adverse effects
4.
Plant Physiol Biochem ; 204: 108136, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37897891

ABSTRACT

Arsenic (As) is a significant environmental element that restricts the growth and production of rice plants. Although the role of iron (Fe) to sequester As in rice is widely known, the molecular mechanism regarding As-Fe interaction remains opaque. Here, we show the differential response of two rice varieties (Ratna and Lalat) in terms of their morphological and biochemical changes in the presence of As and Fe. These results together with in-silico screening, gene expression analysis, and protein-protein interaction studies suggest the role of OsWRKY76 in Fe-mediated As stress alleviation. When OsWRKY76 is activated by MAPK signaling, it inhibits the gene expression of Fe transporters OsIRT1 and OsYSL2, which reduces the amount of Fe accumulated. However, MAPK signaling and OsWRKY76 remain down-regulated during Fe supplementation with As, which subsequently encourages the up-regulation of OsIRT1 and OsYSL2. This results in greater Fe content and decreased As accumulation and toxicity. The lower H2O2 and SOD, CAT, and APX activities were likewise seen under the As + Fe condition. Overall, results revealed the molecular aspects of Fe-mediated control of OsWRKY76 signaling and showed that Ratna is a more As tolerant variety than Lalat. Lalat, however, performs better in As stress due to the presence of Fe.


Subject(s)
Arsenic , Oryza , Iron/metabolism , Oryza/metabolism , Arsenic/toxicity , Arsenic/metabolism , Hydrogen Peroxide/metabolism , Membrane Transport Proteins/metabolism , Plant Roots/metabolism
5.
GM Crops Food ; 14(1): 1-17, 2023 Dec 31.
Article in English | MEDLINE | ID: mdl-37725519

ABSTRACT

CRISPR/Cas9 gene editing system is recently developed robust genome editing technology for accelerating plant breeding. Various modifications of this editing system have been established for adaptability in plant varieties as well as for its improved efficiency and portability. This review provides an in-depth look at the various strategies for synthesizing gRNAs for efficient delivery in plant cells, including chemical synthesis and in vitro transcription. It also covers traditional analytical tools and emerging developments in detection methods to analyze CRISPR/Cas9 mediated mutation in plant breeding. Additionally, the review outlines the various analytical tools which are used to detect and analyze CRISPR/Cas9 mediated mutations, such as next-generation sequencing, restriction enzyme analysis, and southern blotting. Finally, the review discusses emerging detection methods, including digital PCR and qPCR. Hence, CRISPR/Cas9 has great potential for transforming agriculture and opening avenues for new advancements in the system for gene editing in plants.


Subject(s)
CRISPR-Cas Systems , Gene Editing , CRISPR-Cas Systems/genetics , Plant Breeding , Agriculture , Blotting, Southern
6.
Environ Pollut ; 333: 122040, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37328127

ABSTRACT

Despite the growing concerns about arsenic (As) toxicity, information on wheat adaptability in such an aggravating environment is limited. Thus, the present investigation based on an iono-metabolomic approach is aimed to decipher the response of wheat genotypes towards As toxicity. Wheat genotypes procured from natural conditions were characterized as high As-contaminated (Shri ram-303 and HD-2967) and low As-contaminated (Malviya-234 and DBW-17) based on ICP-MS As accumulation analysis. Reduced chlorophyll fluorescence attributes, grain yield and quality traits, and low grain nutrient status were accompanied by remarkable grain As accumulation in high As-contaminated genotypes, thus imposing a higher potential cancer risk and hazard quotient. Contrarily, in low As-contaminated genotypes, the richness of Zn, N, Fe, Mn, Na, K, Mg, and Ca could probably have supported less grain As accumulation, imparting better agronomic and grain quality traits. Additionally, from metabolomic analysis (LC-MS/MS and UHPLC), abundances of alanine, aspartate, glutamate, quercetin, isoliquiritigenin, trans-ferrulic, cinnamic, caffeic, and syringic bestow Malviya-234 as the best edible wheat genotype. Further, the multivariate statistical analysis (HCA, PCA, and PLS-DA) revealed certain other key metabolites (rutin, nobletin, myricetin, catechin, and naringenin) based genotypic discrimination that imparts strength to genotypes for better adaptation in harsh conditions. Out of the 5 metabolic pathways ascertained through topological analysis, the two main pathways vital for plant's metabolic adjustments in an As-induced environment were: 1. The alanine, aspartate and glutamate metabolism pathway, and 2. The flavonoid biosynthesis pathway. This is also evident from network analysis, which stipulates amino acid metabolism as a prominent As regulatory factor closely associated with flavonoids and phenolics. Therefore, the present findings are useful for wheat breeding programs to develop As adaptive genotypes that are beneficial for crop improvement and human health.


Subject(s)
Arsenic , Animals , Male , Sheep , Humans , Arsenic/toxicity , Arsenic/metabolism , Triticum/metabolism , Plant Breeding , Chromatography, Liquid , Aspartic Acid , Tandem Mass Spectrometry , Genotype , Edible Grain/metabolism
7.
Monaldi Arch Chest Dis ; 92(4)2022 Jan 27.
Article in English | MEDLINE | ID: mdl-35086327

ABSTRACT

Pulmonary tuberculosis (PTB) is an infectious disease caused by Mycobacterium tuberculosis (MTB) and is associated with significant mortality and morbidity. There has been a number of advances in the diagnosis of PTB but there is a need for simple blood based diagnostic test. A follow up of the patients on treatment remains challenging. This study was planned to evaluate the role of IP-10 in the follow up of PTB patients. A total of 60 subjects were enrolled in the study, 40 patients with confirmed diagnosis of PTB and 20 healthy controls. The value of interferon (IFN)γ inducible protein 10 (IP10) was measured in all the subjects at the start of the treatment and at a follow up of two months. Mean age of the study subjects was 40.96 years. Mean duration of symptoms at presentation was 1 month and 17 days. The induration on Tuberculin skin test (TST) was between 10-20mm in most (62.5%) of the study subjects. Majority (45%) showed moderately advanced disease on chest x-ray. There was no association of IP-10 with TST diameter and gene x-pert. Similarly, no significant difference in IP-10 levels was found in relation to sputum grading and x-ray score at diagnosis and after 2 months of treatment. IP-10 has very limited role in diagnosis of active TB in especially in high TB burden countries. The role of IP-10 in follow up of PTB patients could not be ascertained by our study. However, more studies are needed in this pretext with larger sample size and extended duration of follow up.


Subject(s)
Chemokine CXCL10 , Tuberculosis, Pulmonary , Adult , Follow-Up Studies , Humans , Interferons , Tuberculin Test , Tuberculosis, Pulmonary/diagnosis
8.
Phys Chem Chem Phys ; 23(12): 7418-7425, 2021 Mar 28.
Article in English | MEDLINE | ID: mdl-33876101

ABSTRACT

Recently, a number of new two-dimensional (2D) materials based on puckered phosphorene and arsenene have been predicted with moderate band gaps, good absorption properties and carrier mobilities superior to those of transition metal dichalcogenides. For heterojunction applications, it is important to know the relative band alignment of these new 2D materials. We report the band alignment of puckered CaP3, CaAs3 and BaAs3 monolayers at the quasiparticle level of theory (G0W0), calculating band offsets for isolated monolayers according to the electron affinity rule. Our calculations suggest that monolayer CaP3, CaAs3 and BaAs3 all form type-II (staggered) heterojunctions which makes them suitable for solar-energy conversion applications. Their quasiparticle gaps are 2.1 (direct), 1.8 (direct) and 1.5 eV (indirect), respectively. We also examine trends in the electronic structure in the light of chemical bonding analysis. We show that the indirect band gap in monolayer BaAs3 is caused by relatively strong As 3p-Ba 5d bonding interactions. Our results provide guidance for the design of phosphorene-like materials and their heterojunction applications.

9.
Phys Chem Chem Phys ; 22(5): 2775-2782, 2020 Feb 07.
Article in English | MEDLINE | ID: mdl-31951228

ABSTRACT

van der Waals (vdW) interaction-based heterostructures are known for enhanced photon absorption. However, the origin of these phenomena is not yet completely understood. In this work, using first-principles calculations, we provide a comprehensive study to show the effect of vdW interactions on the optical and electrical characteristics of the device and its origin. Herein, MoS2/2D (where 2D varies as graphene, black and blue phosphorene, and InSe) vdW heterojunctions are considered as model structures. The change in the band gap of the heterostructures is because of hybridisation and the non-linearity of the exchange-correlation functional. Hybridisation is correlated with strain and the difference in interstitial potential between layers of the heterostructure and the vacuum level. Significantly, the estimated values of energy conversion efficiency are high in the case of MoS2/InSe and MoS2/BlackP vdW heterostructures as compared to MoS2/GR and MoS2/BlueP, suggesting their potential application in efficient and atomically thick excitonic solar cell devices.

10.
Sci Rep ; 9(1): 15983, 2019 Nov 05.
Article in English | MEDLINE | ID: mdl-31690735

ABSTRACT

The earth abundant and non-toxic solar absorber material kesterite Cu2ZnSn(S/Se)4 has been studied to achieve high power conversion efficiency beyond various limitations, such as secondary phases, antisite defects, band gap adjustment and microstructure. To alleviate these hurdles, we employed screening based approach to find suitable cationic dopant that can promote the current density and the theoretical maximum upper limit of the energy conversion efficiency (P(%)) of CZTS/Se solar devices. For this task, the hybrid functional (Heyd, Scuseria and Ernzerhof, HSE06) were used to study the electronic and optical properties of cation (Al, Sb, Ga, Ba) doped CZTS/Se. Our in-depth investigation reveals that the Sb atom is suitable dopant of CZTS/CZTSe and also it has comparable bulk modulus as of pure material. The optical absorption coefficient of Sb doped CZTS/Se is considerably larger than the pure materials because of easy formation of visible range exciton due to the presence of defect state below the Fermi level, which leads to an increase in the current density and P(%). Our results demonstrate that the lower formation energy, preferable energy gap and excellent optical absorption of the Sb doped CZTS/Se make it potential component for relatively high efficient solar cells.

11.
Mater Sci Eng C Mater Biol Appl ; 104: 109984, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31500006

ABSTRACT

The present investigation highlights the strong antioxidant, anticancer and larvicidal potential of green synthesized silver nanoparticles (AgNPs) using aqueous leaf extract of Piper longum L. for their diverse therapeutic applications. The optimum conditions for the synthesis of AgNPs were recorded as 1 mM AgNO3, 60 ±â€¯2 °C at pH 6 for 120 min. Synthesized AgNPs proved to be highly stable and monodispersed as characterized through various techniques. UV-Vis spectrum of biosynthesized AgNPs showed a maximum absorption peak at 420 nm. Field emission-Scanning electron microscopy (FE-SEM) and High resolution-Transmission electron microscopy (HR-TEM) micrographs showed the spherical shape of AgNPs with mean diameter size of 28.8 nm. Existence of crystallographic AgNPs was proved by X-ray diffraction (XRD) pattern analysis. Presence of phenolics, terpenoids and flavonoids compounds which act as bioreducing agents were confirmed by Fourier-transform infrared spectroscopy (FTIR) analysis. Furthermore, the AgNPs and leaf extracts prepared individually in different solvents such as methanol, ethyl acetate, chloroform, hexane and aqueous were assessed for their bio-efficacies. AgNPs showed the enhanced antioxidant (IC50 67.56 µg) and radical-scavenging activities (IC50 196.8 µg) as compared to the crude leaf extracts. Anticancer activity revealed the strong and dose-dependent cytotoxic effect of AgNPs against the HeLa cells showing maximum IC50 value being 5.27 µg/mL after 24 h and was also found to be non-toxic to normal cells (HEK). The AgNPs induced the fragmentation of DNA in the cells, indicating the occurrence of apoptosis and necrosis. Subsequently, an efficient larvae mortality was also recorded against Anopheles stephensi having LC50 and LC90 values being 8.969 and 16.102 ppm, followed by Aedes aegypti (LC50;14.791 and LC90;28.526 ppm) and Culex quinquefasciatus (LC50;18.662 and LC90;40.903 ppm) after 72 h of exposure. Besides, they showed no toxicity against Mesocyclops thermocyclopoides (non-target organism). This is the first report showing strong anti-tumorous and larvicidal activity of AgNPs synthesized using P. longum leaf extract against cervical cancer cell line and mosquito vectors causing dengue, malaria and filariasis. Based on our findings, we suggest that AgNPs derived using P. longum leaf extract possessed excellent anti-cancerous and mosquito larvicidal potential and therefore, can be bioprospected further for the management of these hazardous health diseases. This study has given a new insight for the novel drug designing after conducting experiments on the in vivo models.


Subject(s)
Metal Nanoparticles/chemistry , Piper/chemistry , Plant Extracts/chemistry , Silver/chemistry , Aedes/drug effects , Animals , Anopheles/drug effects , Bioengineering/methods , Cell Line , Cell Line, Tumor , Culex/drug effects , HEK293 Cells , HeLa Cells , Humans , Insecticides/chemistry , Insecticides/pharmacology , Larva/drug effects , Lethal Dose 50 , Plant Extracts/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...