Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Mater Horiz ; 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38958665

ABSTRACT

With recent advancements in technology, the emission of electromagnetic radiation has emerged as a significant issue due to electromagnetic interferences. These interferences include various undesirable emissions that can degrade the performance of equipment and structures. If left unresolved, these complications can create extra damage to the security operations and communication systems of numerous electronic devices. Various studies have been conducted to address these issues. In recent years, electrically conductive polypyrrole has gained a unique position because of its many advantageous properties. The absorption of microwaves and the electromagnetic interference (EMI) shielding characteristics of electrically conductive polypyrrole can be described in relation to its great electrical conductivity with strong relaxation and polarization effects due to the existence of strong bonds or localized charges. In the present review, advancements in electromagnetic interference shielding with conjugated polypyrrole and its nanocomposites with metal oxides are discussed and correlated with various properties such as dielectric properties, magnetic properties, electrical conductivity, and microwave adsorption properties. This review also focuses on identifying the most suitable polypyrrole-based metal oxide nanocomposites for electromagnetic interference shielding applications.

2.
Int J Biol Macromol ; 188: 542-567, 2021 Oct 01.
Article in English | MEDLINE | ID: mdl-34384802

ABSTRACT

Over the past few years, amino acids (AA) have emerged as promising biomaterials for the synthesis of functional polymers. Owing to the diversity of functional groups in amino acids, various polymerization methods may be used to make a wide range of well-defined functional amino-acid/peptide-based optically active polymers with varying polymer lengths, compositions, and designs. When incorporated with chirality and self-assembly, they offer a wide range of applications and are particularly appealing in the field of drug delivery, tissue engineering, and biosensing. There are several classes of these polymers that include polyamides (PA), polyesters (PE), poly(ester-amide)s (PEA)s, polyurethanes (PU)s, poly(depsipeptide)s (PDP)s, etc. They offer the ability to control functionality, conjugation, crosslinking, stimuli responsiveness, and tuneable mechanical/thermal properties. In this review, we present the recent advancements in the synthesis strategies for obtaining these amino acid-derived bio-macromolecules, their self-assembly properties, and the wealth of prevalent applications.


Subject(s)
Amino Acids/chemistry , Biopolymers/chemistry , Drug Delivery Systems , Peptides/chemistry , Amino Acids/chemical synthesis , Humans , Peptides/chemical synthesis , Pharmaceutical Preparations , Polymerization , Tissue Engineering/trends
3.
Nanoscale ; 5(10): 4330-6, 2013 May 21.
Article in English | MEDLINE | ID: mdl-23563991

ABSTRACT

Organic conductive polymers are at the forefront of materials science research because of their diverse applications built around their interesting and unique properties. This work reports for the first time a correlation between the structural, electrical, and electromagnetic properties of polyaniline (PANI)-tetragonal BaTiO3 (TBT) nanocomposites prepared by in-situ emulsion polymerization. XRD studies and HRTEM micrographs of these nanocomposites clearly revealed the incorporation of TBT nanoparticles in the conducting PANI matrix. EPR and XPS measurements reveal that increase in loading level of BaTiO3 results in a reduction of the doping level of PANI. The Ku-Band (12.4-18 GHz) network analysis of these composites shows exceptional microwave shielding response with absorption dominated total shielding effectiveness (SET) value of -71.5 dB (blockage of more than 99.99999% of incident radiation) which is the highest value reported in the literature. Such a high attenuation level, which critically depends on the fraction of BaTiO3 is attributed to optimized dielectric and electrical attributes. This demonstrates the possibility of using these materials in stealth technology and for making futuristic radar absorbing materials (RAMs).

4.
Article in English | MEDLINE | ID: mdl-22902930

ABSTRACT

Nonlinear optical single crystals are getting attention because of its enormous applications in the area of fiber optic communication and optical signal processing. In this article, we are reporting the single crystal growth of l-lysine monohydrochloride by slow evaporation solution growth technique, by using double distilled water as the solvent. We found that the grown single crystal is bulk in size and fairly transparent. But after a period of time, due to its hygroscopic nature, the transparency is completely vanished and became opaque. Then we have attempted to coat the poly methyl methacrylate (PMMA) polymer on the surface of l-lysine monohydrochloride (l-LMHCL) single crystal by dip coating method. This polymer coating is giving resistance to hygroscopic nature and also acting as thin protective covering layer without affecting the other properties. Then we have systematically studied the different properties of bare, polymer coated and hygroscopic l-LMCHL single crystals. Its crystalline perfection was examined by high resolution X-ray diffractometer and found major differences in crystalline quality. Its structural and optical behavior was assessed by powder X-ray diffraction, UV-vis and luminescence analyses.


Subject(s)
Hygroscopic Agents/chemistry , Lysine/chemistry , Nonlinear Dynamics , Optical Phenomena , Polymers/chemistry , Absorption , Crystallization , Luminescence , Powders , Solutions , Spectroscopy, Fourier Transform Infrared , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL
...