Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Pollut Res Int ; 30(44): 98548-98562, 2023 Sep.
Article in English | MEDLINE | ID: mdl-35688971

ABSTRACT

The present study described the synthesis and characterization of MOF-76(Tb) for hydrogen storage and humidity sensing applications. The structure and morphology of as-synthesized material were studied using powder X-ray diffraction, scanning, and transmission electron microscopy. The crystal structure of MOF-76(Tb) consists of terbium(III) and benzene-1,3,5-tricarboxylate(-III) ions, one coordinated aqua ligand and one crystallization N,N´-dimethylformamide molecule. The polymeric framework of MOF-76(Tb) contains 1D sinusoidally shaped channels with sizes of 6.6 × 6.6 Å propagating along c crystallographic axis. The thermogravimetric analysis of the prepared material exhibited thermal stability up to 600 °C. At 77 K and pressure up to 20 bar; 0.6 wt.% hydrogen storage capacity for MOF-76(Tb) was observed. Finally, the humidity sensing measurements (water adsorption experiments) were performed, and the results indicate that MOF-76(Tb) is not a suitable material for moisture sensing applications.


Subject(s)
Metal-Organic Frameworks , Humidity , Terbium , Polymers , Hydrogen
2.
Sci Rep ; 12(1): 17366, 2022 Oct 17.
Article in English | MEDLINE | ID: mdl-36253389

ABSTRACT

The present article intended to study the influence of post-synthetic modification with ethylenediamine (en, diamine) and diethylenetriamine (deta, triamine) within the coordinatively unsaturated sites (CUSs) of HKUST-1 on carbon dioxide and hydrogen storage. The as-sythesized adsorbent was solvent-exchanged and subsequently post-synthetically modified with di-/triamines as sources of amine-based sorption sites due to the increased CO2 storage capacity. It is known that carbon dioxide molecules have a high affinity for amine groups, and moreover, the volume of amine molecules itself reduces the free pore volume in HKUST-1, which is the driving force for increasing the hydrogen storage capacity. Different concentrations of amines were used for modification of HKUST-1, through which materials with different molar ratios of HKUST-1 to amine: 1:0.05; 1:0.1; 1:0.25; 1:0.5; 1:0.75; 1:1; 1:1.5 were synthesized. Adsorption measurements of carbon dioxide at 0 °C up to 1 bar have shown that the compounds can adsorb large amounts of carbon dioxide. In general, deta-modified samples showed higher adsorbed amounts of CO2 compared to en-modified materials, which can be explained by the higher number of amine groups within the deta molecule. With an increasing molar ratio of amines, there was a decrease in wt.% CO2. The maximum storage capacity of CO2 was 22.3 wt.% for HKUST-1: en/1:0.1 and 33.1 wt.% for HKUST-1: deta/1:0.05 at 0 °C and 1 bar. Hydrogen adsorption measurements showed the same trend as carbon dioxide, with the maximum H2 adsorbed amounts being 1.82 wt.% for HKUST-1: en/1:0.1 and 2.28 wt.% for HKUST-1: deta/1:0.05 at - 196 °C and 1 bar.

SELECTION OF CITATIONS
SEARCH DETAIL
...