Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Physiol Mol Biol Plants ; 30(2): 227-247, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38623164

ABSTRACT

Among legumes, lentil serves as an imperative source of dietary proteins and are considered an important pillar of global food and nutritional security. The crop is majorly cultivated in arid and semi-arid regions and exposed to different abiotic stresses. Drought stress is a polygenic stress that poses a major threat to the crop productivity of lentils. It negatively influenced the seed emergence, water relations traits, photosynthetic machinery, metabolites, seed development, quality, and yield in lentil. Plants develop several complex physiological and molecular protective mechanisms for tolerance against drought stress. These complicated networks are enabled to enhance the cellular potential to survive under extreme water-scarce conditions. As a result, proper drought stress-mitigating novel and modern approaches are required to improve lentil productivity. The currently existing biotechnological techniques such as transcriptomics, genomics, proteomics, metabolomics, CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/cas9), and detection of QTLs (quantitative trait loci), proteins, and genes responsible for drought tolerance have gained appreciation among plant breeders for developing climate-resilient lentil varieties. In this review, we critically elaborate the impact of drought on lentil, mechanisms employed by plants to tolerate drought, and the contribution of omics approaches in lentils for dealing with drought, providing deep insights to enhance lentil productivity and improve resistance against abiotic stresses. We hope this updated review will directly help the lentil breeders to develop resistance against drought stress.

2.
Environ Sci Pollut Res Int ; 31(5): 7498-7513, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38158536

ABSTRACT

The toxicity of lead (Pb) in agricultural soil is constantly increasing as a result of anthropogenic activities. Pb is one of the most phytotoxic metals in soil that accumulates in plant tissue, resulting in yield loss. It is currently becoming more popular to supplement glycine betaine (GB) for Pb-induced stress tolerance in crop plants. Currently, no report describes the use of GB as a stress mitigator for growth attributes and stress-specific biomarkers in barley plants under Pb stress conditions. Hence, the present research was designed to examine the stress-mitigating behavior of GB on various growth attributes including germination percentage, seed vigor index (SVI), radicle length, plant biomass (fresh and dry), shoot and root length, physiological attributes such as relative water content (RWC), and stress-specific biomarkers like electrolyte leakage (EL), and H2O2 content of two barley varieties viz. BH959 and BH946 at three Pb stress treatments (15 mM, 25 mM, and 35 mM), with and without GB (2 mM) supplementation in natural conditions. The present investigation showed that at the highest Pb stress (35 mM), the germination rate was reduced to zero, and the growth attributes and RWC of both barley varieties were also reduced as compared to the non-stressed plants (control) with an increase in Pb treatment. However, EL up to 70% and H2O2 content up to 30% increased with an increase in Pb stress concentration indicated by ROS accumulation, resulting in more oxidative stress. Additionally, GB application alleviated the toxic effect of Pb stress by improving the rate of germination by 33.3% and growth performance by reducing the ROS accumulation in terms of reducing stress biomarkers H2O2 by 25%, and EL by 12%. It has been revealed that the application of GB can minimize or reduce the toxic effects caused by Pb toxicity in both varieties, positively modulating plant growth performances and lowering oxidative stress. This research may provide a scientific basis for assessing Pb tolerance in barley plants and developing alternative approaches to protecting them from the severe effects of Pb toxicity.


Subject(s)
Betaine , Hordeum , Betaine/pharmacology , Lead/pharmacology , Hydrogen Peroxide/pharmacology , Reactive Oxygen Species/pharmacology , Oxidative Stress , Soil , Biomarkers
3.
Nitric Oxide ; 140-141: 58-76, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37848156

ABSTRACT

The natural environment of plants comprises a complex set of various abiotic stresses and their capability to react and survive under this anticipated changing climate is highly flexible and involves a series of balanced interactions between signaling molecules where nitric oxide becomes a crucial component. In this article, we focussed on the role of nitric oxide (NO) in various signal transduction pathways of plants and its positive impact on maintaining cellular homeostasis under various abiotic stresses. Besides this, the recent data on interactions of NO with various phytohormones to control physiological and biochemical processes to attain abiotic stress tolerance have also been considered. These crosstalks modulate the plant's defense mechanism and help in alleviating the negative impact of stress. While focusing on the diverse functions of NO, an effort has been made to explore the functions of NO-mediated post-translational modifications, such as the N-end rule pathway, tyrosine nitration, and S-nitrosylation which revealed the exact mechanism and characterization of proteins that modify various metabolic processes in stressed conditions. Considering all of these factors, the present review emphasizes the role of NO and its interlinking with various phytohormones in maintaining developmental processes in plants, specifically under unfavorable environments.


Subject(s)
Nitric Oxide , Plant Growth Regulators , Nitric Oxide/metabolism , Plant Growth Regulators/metabolism , Plant Physiological Phenomena , Plants/metabolism , Stress, Physiological
4.
Cureus ; 15(2): e35023, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36938283

ABSTRACT

Diabetes is a major public health concern and natural easy-going remedies are being searched. Since Cinnamomum zeylanicum Blume has a low coumarin concentration and possible insulin-enhancing properties, it is preferred over all other cinnamon species. Although similar research has been done on humans, there have been very few studies on this particular species, and none among South Asians. Moreover, no human trial that properly described their intervening agent (C. zeylanicum) and checked its efficacy at the molecular level along with clinical variables was conducted. Therefore, the current research aimed to explore the effects of C. zeylanicum on the glycemic index, lipid profile, and expression of the protein tyrosine phosphatase 1 B (PTP1B) enzyme in the peripheral blood mononuclear cells (PBMC) in type 2 diabetes. We examined the presence of bioactive compounds in young C. zeylanicum bark (Alba grade) from native Sri Lanka using gas chromatography-mass spectrometry, high-performance thin-layer chromatography, and thin-layer chromatography before introducing it in the clinical study where trans-Cinnamaldehyde was found to be a major chemical constituent (>60%). Then, from January 2020 to March 2022, a randomized double-blinded placebo-controlled trial was carried out in the Diabetic Clinic at AIIMS Rishikesh. A total of 154 diabetic patients were enrolled and were taken either cinnamon or placebo capsules (1.5 g/day) for 120 days on an empty stomach with warm water along with their conventional treatment. Reduction in fasting blood glucose levels in the cinnamon group was found -35.50% (95% CI, -173 to 58.4), whereas in the placebo group change was 5.00% (95% CI, -165 to 224). For glycosylated hemoglobin, it differed -0.85% (95% CI, -8.2 to 1.6) in the cinnamon group compared to the placebo where it was found 0.15% (95% CI, -6.1 to 5.5). PTP1B expression in PBMC was determined from pre- and post-trial blood samples using the Western Blot, and significant inhibition was also observed (p=0.039). The study result depicts, C. zeylanicum is emerging as a beneficial plant for type 2 diabetes in Northern India and could be used as an adjunctive treatment rather than as a standalone managerial remedy.

5.
Plants (Basel) ; 11(19)2022 Sep 26.
Article in English | MEDLINE | ID: mdl-36235391

ABSTRACT

Silicon (Si) is the most abundant element on earth after oxygen and is very important for plant growth under stress conditions. In the present study, we inspected the role of Si in the mitigation of the negative effect of salt stress at three concentrations (40 mM, 80 mM, and 120 mM NaCl) in two wheat varieties (KRL-210 and WH-1105) with or without Si (0 mM and 2 mM) treatment. Our results showed that photosynthetic pigments, chlorophyll stability index, relative water content, protein content, and carbohydrate content were reduced at all three salt stress concentrations in both wheat varieties. Moreover, lipid peroxidation, proline content, phenol content, and electrolyte leakage significantly increased under salinity stress. The antioxidant enzyme activities, like catalase and peroxidase, were significantly enhanced under salinity in both leaves and roots; however, SOD activity was drastically decreased under salt stress in both leaves and roots. These negative effects of salinity were more pronounced in WH-1105, as KRL-210 is a salt-tolerant wheat variety. On the other hand, supplementation of Si improved the photosynthetic pigments, relative water, protein, and carbohydrate contents in both varieties. In addition, proline content, MDA content, and electrolyte leakage were shown to decline following Si application under salt stress. It was found that applying Si enhanced the antioxidant enzyme activities under stress conditions. Si showed better results in WH-1105 than in KRL-210. Furthermore, Si was found to be more effective at a salt concentration of 120 mM compared to low salt concentrations (40 mM, 80 mM), indicating that it significantly improved plant growth under stressed conditions. Our experimental findings will open a new area of research in Si application for the identification and implication of novel genes involved in enhancing salinity tolerance.

SELECTION OF CITATIONS
SEARCH DETAIL
...