Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
STAR Protoc ; 2(4): 100910, 2021 12 17.
Article in English | MEDLINE | ID: mdl-34746868

ABSTRACT

MicroRNAs (miRNAs) are elements of the gene regulatory network and manipulating their abundance is essential toward elucidating their role in patho-physiological conditions. We present a detailed workflow that identifies important miRNAs using a machine learning algorithm. We then provide optimized techniques to validate the identified miRNAs through over-expression/loss-of-function studies. Overall, these protocols apply to any field in biology where high-dimensional data are produced. For complete details on the use and execution of this protocol, please refer to Wong et al. (2021a).


Subject(s)
Gene Expression Profiling/methods , Machine Learning , MicroRNAs/genetics , Transcriptome/genetics , Algorithms , Cell Culture Techniques/methods , Cells, Cultured , Gene Knockdown Techniques , Gene Regulatory Networks/genetics , Humans , Islets of Langerhans/cytology , Workflow
2.
iScience ; 24(4): 102379, 2021 Apr 23.
Article in English | MEDLINE | ID: mdl-33981968

ABSTRACT

Dicer knockout mouse models demonstrated a key role for microRNAs in pancreatic ß-cell function. Studies to identify specific microRNA(s) associated with human (pro-)endocrine gene expression are needed. We profiled microRNAs and key pancreatic genes in 353 human tissue samples. Machine learning workflows identified microRNAs associated with (pro-)insulin transcripts in a discovery set of islets (n = 30) and insulin-negative tissues (n = 62). This microRNA signature was validated in remaining 261 tissues that include nine islet samples from individuals with type 2 diabetes. Top eight microRNAs (miR-183-5p, -375-3p, 216b-5p, 183-3p, -7-5p, -217-5p, -7-2-3p, and -429-3p) were confirmed to be associated with and predictive of (pro-)insulin transcript levels. Use of doxycycline-inducible microRNA-overexpressing human pancreatic duct cell lines confirmed the regulatory roles of these microRNAs in (pro-)endocrine gene expression. Knockdown of these microRNAs in human islet cells reduced (pro-)insulin transcript abundance. Our data provide specific microRNAs to further study microRNA-mRNA interactions in regulating insulin transcription.

SELECTION OF CITATIONS
SEARCH DETAIL
...