Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Heliyon ; 10(11): e31702, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38867945

ABSTRACT

The release of organic pollutants and dyes into the environment by industries has had profound and harmful effects on both humans and ecosystems. Graphene oxide (GO) and its reduced form have been investigated for their effectiveness in removing pollutant dyes. GO nano-powder was synthesized using an improved version of Hummer's method and subsequently thermally reduced at various temperatures, including 125, 150, 175, and 200 °C, under vacuum conditions. In the X-ray diffraction spectra, an intense (001) diffraction peak was initially observed at 9.136° (2θ) for pristine GO. This peak gradually shifted towards higher angles as the reduction process took place and eventually disappeared when the GO was reduced at 200 °C. The intensity ratio of the D and G bands (ID/IG ratio) for GO nano-powder in the Raman spectra decreased from 0.94 to 0.76 due to the reduction process. The FTIR spectra of GO and reduced graphene oxide (rGO) also illustrated the reduction process. The bandgap of pristine GO significantly decreased from 2.31 to 0.73 eV, as determined by ultraviolet-visible (UV-Vis) diffuse reflectance spectrophotometry during the reduction process. The surface area and pore volume of both pristine GO and rGO-150 were determined using the BET (Brunauer-Emmett-Teller) and BJH (Barrett-Joyner-Halenda) methods. The results indicated an increase in the BET surface area from 6.61 to 7.86 m2/g and a corresponding enhancement in pore volume from 0.118 to 0.128 cc/g after reduction. The adsorption and photocatalytic degradation behavior of pristine GO and reduced graphene oxides (rGOs) were examined using methylene blue dye. The pristine GO demonstrated impressive adsorption capability, effectively removing the dye by 85.78 % within just 15 min and achieving nearly 97 % removal after 4 h. In contrast, the highest photocatalytic degradation of methylene blue, about 47.58 %, was attained for the rGO sample reduced at 150 °C under the illumination of visible light.

2.
Environ Sci Pollut Res Int ; 30(44): 98671-98681, 2023 Sep.
Article in English | MEDLINE | ID: mdl-36287362

ABSTRACT

Using zinc tellurium (ZnTe) as the buffer layer in the Cu2ZnSnS4 (CZTS)-based solar cells showed an improvement in overall efficiency. ZnTe is investigated as an alternative to replace the conventional toxic Cd-contained buffer layers. It may also reduce the overall cost of these cells as both layers (ZnTe and CZTS) have eco-friendly and earth-abundant constituents. The sol-gel spin coating method is used for the deposition of CZTS thin films on the corning glass substrates. The X-ray diffraction studies showed the peaks corresponding to (112), (200), (220), and (312) planes which confirmed the formation of the essential kesterite phase. The optical band gap of the deposited films was found at around 1.45 eV by the UV-visible-NIR spectrophotometer. The optimum thickness of the absorber layer (CZTS) and buffer layer (ZnTe) was investigated based on the performance of the ZnO:Al/ZnO/ZnTe/CZTS/Mo cell structure by using the AMPS-1D simulation tool. In contrast, the tool was molded by the experimentally investigated data for the constituent materials of the cell structure. The solar cells' efficiency was increased by 23.47% at 2500 nm and 50 nm thickness of the CZTS and ZnTe layers, respectively. In addition, it was analyzed and found that the current density value showed an improvement with operating temperature as it is one of the requirements in the high solar radiation areas where the temperature even rises more than 50 °C in the summer.


Subject(s)
Solar Energy , Zinc Oxide , Tellurium , Zinc , Computer Simulation
3.
ACS Omega ; 7(48): 44170-44179, 2022 Dec 06.
Article in English | MEDLINE | ID: mdl-36506135

ABSTRACT

Graphene oxide (GO) nano-powder is synthesized by the modified Hummer's method, and further thin films are deposited by using the water solution of GO through spin-coating. These films are thermally reduced along with the synthesized GO nano-powder at 50 to 200 °C in a high vacuum. Microstructural, electrical, and optical properties are expectedly controlled by thermal reduction. The electronic properties of GO are investigated by X-ray photoelectron spectroscopy and near-edge X-ray absorption fine structure. The reduction is confirmed by Raman spectroscopy. The work function and band gap of GO are tuned with the thermal reduction. The changes in properties of GO are not linear, and anomalous changes are observed for the reduction around 150 °C. Pristine and reduced GO nano-powder is incorporated into TiO2 paste to be the photoanode for dye-sensitized solar cells (DSSCs). It is observed that the performance of the fabricated cells is significantly enhanced for the GO reduced at 150 °C, and the cell exhibited a significant increment of ∼23% for the power conversion efficiency in comparison to DSSC based on an unmodified TiO2 photoanode.

SELECTION OF CITATIONS
SEARCH DETAIL
...