Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Analyst ; 148(17): 4091-4098, 2023 Aug 21.
Article in English | MEDLINE | ID: mdl-37486297

ABSTRACT

There is a demand for biosensors working under in vivo conditions, which requires significant device size and endurance miniaturization in solution environments. We demonstrated the detection of uric acid (UA) molecules, a marker of diseases like gout, whose continuous monitoring is required in medical diagnosis. We used a field effect transistor (FET) composed of an atomically thin transition metal dichalcogenide (TMD) channel. The sensor detection was carried out in a solution environment, for which we protected the electrodes of the source and drain from the solution. A microfluidic channel controls the solution flow that can realize evaporation-free conditions and provide an accurate concentration and precise measurement. We detected a systematic change of the drain current with the concentration of the UA in isopropyl alcohol (IPA) solvent with a detection limit of 60 nM. The sensor behavior is reversible, and the drain current returns to its original value when the channel is washed with pure solvent. The results demonstrate the feasibility of applying the MoS2-FET device to UA detection in solution, suggesting its possible use in the solution environment.

2.
Phys Chem Chem Phys ; 23(48): 27273-27281, 2021 Dec 15.
Article in English | MEDLINE | ID: mdl-34850795

ABSTRACT

We have explored the chemical reaction of the photoisomerization and thermal reaction of the photochromic spiropyran (SP) 1',3'-Dihydro-1',3',3' trimethyl-6-nitrospiro[2H-1 benzopyran-2,2'-(2H)-indole] molecule deposited on the atomic thin channel of a MoS2 field-effect transistor (FET) through the analysis of the FET property. With four monolayers of SP molecules on the channel, we observed a clear shift of the threshold voltage in the drain-current vs gate-voltage plot with UV-light injection on the molecule, which was due to the change of the SP molecule to merocyanine (MC). A complete reset from MC to SP molecule was achieved by thermal annealing, while the injection of green light could revert the FET property to the original condition. In the process of change from MC to SP, two types of decay rates were confirmed. The quick- and slow-decay components corresponded to the molecules attached directly to the substrate and those in the upper layer, respectively. The activation energies for the conversion of MC to SP molecules were estimated as 71 kJ/mol and 90 kJ/mol for the former and latter, respectively. Combined with DFT calculations, we concluded that the Id-Vg shift with photoisomerization from SP to MC is due to the upper layer molecules and the dipole moment in the surface normal direction. Based on the estimated activation energy of 90 kJ/mol for the reset process, we calculated the conversion rate in a controllable temperature range. From these values, we consider that the chemical state of MC can be maintained and switched in a designated time period, which demonstrates the possibility of this system in logical operation applications.

4.
ACS Omega ; 5(43): 28108-28115, 2020 Nov 03.
Article in English | MEDLINE | ID: mdl-33163793

ABSTRACT

We report a precise measurement of the sensor behavior of the field effect transistor (FET) formed with the MoS2 channel when the channel part is exposed to Cl2 gas. The gas exposure and the electrical measurement of the MoS2 FET were executed with in situ ultrahigh-vacuum (UHV) conditions in which the surface analysis techniques were equipped. This makes it possible to detect how much sensitivity the MoS2 FET can provide and understand the surface properties. With the Cl2 gas exposure to the channel, the plot of the drain current versus the gate voltage (I d-V g curve) shifts monotonically toward the positive direction of V g, suggesting that the adsorbate acts as an electron acceptor. The I d-V g shifts are numerically estimated by measuring the onset of I d (threshold voltage, V th) and the mobility as a function of the dosing amounts of the Cl2 gas. The behaviors of both the V th shift and the mobility with the Cl2 dosing amount can be fitted with the Langmuir adsorption kinetics, which is typically seen in the uptake curve of molecule adsorption onto well-defined surfaces. This can be accounted for by a model where an impinging molecule occupies an empty site with a certain probability, and each adsorbate receives a certain amount of negative charge from the MoS2 surface up to the monolayer coverage. The charge transfer makes the V th shifts. In addition, the mobility is reduced by the enhancement of the Coulomb scattering for the electron flow in the MoS2 channel by the accumulated charge. From the thermal desorption spectroscopy (TDS) measurement and density functional theory (DFT) calculations, we concluded that the adsorbate that is responsible for the change of the FET property is the Cl atom that is dissociated from the Cl2 molecule. The monotonic shift of V th with the coverage suggests that the MoS2 device sensor has a good sensitivity to detect 10-3 monolayers (ML) of adsorption corresponding to the ppb level sensor with an activation time of 1 s.

5.
ACS Omega ; 5(12): 6676-6683, 2020 Mar 31.
Article in English | MEDLINE | ID: mdl-32258903

ABSTRACT

We investigated the structural and electronic/spin configurations of a film of the Co tetrakis(1,2,5-thiadiazole) porphyrazine (CoTTDPz) molecule adsorbed on the Au(111) surface by a scanning tunneling microscope (STM). CoTTDPz has a structure similar to that of the Co phthalocyanine molecule, but the benzene ring of the isoindole of the phthalocyanine molecule is replaced by the pentagon moiety of 1,2,5-thiadiazoles that has an S atom at the apex. We find an ordered molecular lattice with a threefold symmetry where a nearest-neighbor distance of 1.30 nm was measured, which is significantly smaller than that observed for the metal Pc molecule. The unit cell of the lattice contains two molecules that are rotated by 60° relative to each other. With the configuration achieved by this rotation, the neighboring molecules can form a stronger interaction through bonding between the S atom at the apex of one molecule and the N atom of the other (the N atom that is bridging the thiadiazoles). The strong interaction between the molecule and the substrate appears in the spin state examined by the detection of the Kondo resonance, which is formed by the screening of an isolated spin by the conduction electron. Even though the existence of the spin was confirmed for the bulk and thick films of this molecule, no Kondo features are detected for the molecules in the first, second, and third layers of the films. However, the isolated molecule in the third layer showed an intriguing combination of the Kondo feature and an inelastic excitation feature caused by a spin-flip process.

6.
Commun Chem ; 3(1): 36, 2020 Mar 20.
Article in English | MEDLINE | ID: mdl-36703412

ABSTRACT

Magnetic molecules are of interest for application in spintronic and quantum-information processing devices. Therein, control of the interaction between the spins of neighboring molecules is the critical issue. Substitution of outer moieties of the molecule can tune the molecule-molecule interaction. Here we show a novel spin behavior for a magnetic molecule of vanadyl tetrakis (thiadiazole) porphyrazine (abbreviated as VOTTDPz) adsorbed on Au(111), which is modified from vanadyl phthalocyanine (VOPc) by replacing the inert phthalocyanine ligand with a reactive thiadiazole moiety. The magnetic properties of the molecules are examined by observing the Kondo resonance caused by the screening of an isolated spin by conduction electrons using scanning tunneling spectroscopy. The Kondo features are detected at the molecule whose shape and intensity show site-dependent variation, revealing complex spin-spin interactions due to the enhanced interaction between molecules, originating from the functionalization of the ligand with a more reactive moiety.

7.
J Chem Phys ; 140(4): 044711, 2014 Jan 28.
Article in English | MEDLINE | ID: mdl-25669571

ABSTRACT

We formed an epitaxial film of CeO2(111) by sublimating Ce atoms on Ru(0001) surface kept at elevated temperature in an oxygen ambient. X-ray photoemission spectroscopy measurement revealed a decrease of Ce(4+)/Ce(3+) ratio in a small temperature window of the growth temperature between 1070 and 1096 K, which corresponds to the reduction of the CeO2(111). Scanning tunneling microscope image showed that a film with a wide terrace and a sharp step edge was obtained when the film was grown at the temperatures close to the reduction temperature, and the terrace width observed on the sample grown at 1060 K was more than twice of that grown at 1040 K. On the surface grown above the reduction temperature, the surface with a wide terrace and a sharp step was confirmed, but small dots were also seen in the terrace part, which are considerably Ce atoms adsorbed at the oxygen vacancies on the reduced surface. This experiment demonstrated that it is required to use the substrate temperature close to the reduction temperature to obtain CeO2(111) with wide terrace width and sharp step edges.

8.
J Chem Phys ; 130(12): 124502, 2009 Mar 28.
Article in English | MEDLINE | ID: mdl-19334846

ABSTRACT

Introducing a charge into a solid such as a metal oxide through chemical, electrical, or optical means can dramatically change its chemical or physical properties. To minimize its free energy, a lattice will distort in a material specific way to accommodate (screen) the Coulomb and exchange interactions presented by the excess charge. The carrier-lattice correlation in response to these interactions defines the spatial extent of the perturbing charge and can impart extraordinary physical and chemical properties such as superconductivity and catalytic activity. Here we investigate by experiment and theory the atomically resolved distribution of the excess charge created by a single oxygen atom vacancy and a hydroxyl (OH) impurity defects on rutile TiO(2)(110) surface. Contrary to the conventional model where the charge remains localized at the defect, scanning tunneling microscopy and density functional theory show it to be delocalized over multiple surrounding titanium atoms. The characteristic charge distribution controls the chemical, photocatalytic, and electronic properties of TiO(2) surfaces.

10.
Phys Rev Lett ; 95(24): 246102, 2005 Dec 09.
Article in English | MEDLINE | ID: mdl-16384398

ABSTRACT

Inelastically tunneled electrons from a scanning tunneling microscope (STM) were used to induce vibrationally mediated motion of a single cis-2-butene molecule among four equivalent orientations on Pd(110) at 4.8 K. The action spectrum obtained from the motion clearly detects more vibrational modes than inelastic electron tunneling spectroscopy with a STM. We demonstrate the usefulness of the action spectroscopy as a novel single molecule vibrational spectroscopic method. We also discuss its selection rules in terms of resonance tunneling.

11.
Philos Trans A Math Phys Eng Sci ; 362(1819): 1163-71, 2004 Jun 15.
Article in English | MEDLINE | ID: mdl-15306468

ABSTRACT

Inelastic tunnelling spectra of single C4 hydrocarbon molecules adsorbed on the Pd(110) surface are presented. Experimental evidence is given that the symmetry of the molecular orbital into which the tunnelling electron first enters determines which vibrational modes are excited. The action spectrum for cis-2-butene exhibits most of the vibrational modes that are expected to be excited except for nu (C[double bond]C), which may be because the molecule is pi bonded to the substrate, thus making the lifetime of the excited state short.

SELECTION OF CITATIONS
SEARCH DETAIL
...