Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
1.
Microbiol Resour Announc ; 12(7): e0024923, 2023 Jul 18.
Article in English | MEDLINE | ID: mdl-37341619

ABSTRACT

Three strains isolated by geosmin enrichment from a sand filter in an Australian drinking water treatment works were genome sequenced to identify their taxonomic placement, and a bench-scale batch experiment confirmed their geosmin-degrading capability. Using the average nucleotide identity based on the MUMmer algorithm (ANIm), pairwise digital DNA-DNA hybridization (dDDH), and phylogenomic analyses, the strains were identified as Sphingopyxis species.

2.
Environ Sci Pollut Res Int ; 29(13): 19530-19539, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34718954

ABSTRACT

Stormwater runoff contains a myriad of pollutants, including faecal microbes, and can pose a threat to urban water supplies, impacting both economic development and public health. Therefore, it is a necessity to implement a real-time hazard detection system that can collect a substantial amount of data, assisting water authorities to develop preventive strategies to ensure the control of hazards entering drinking water sources. An on-line UV-Vis spectrophotometer was applied in the field to collect real-time continuous data for various water quality parameters (nitrate, DOC, turbidity and total suspended solids) during three storm events in Mannum, Adelaide, Australia. This study demonstrated that the trends for on-line and comparative laboratory-analysed samples were complimentary through the events. Nitrate and DOC showed a negative correlation with water level, while turbidity and total suspended solids indicated a positive correlation with water level during the high rainfall intensity. The correlations among nitrate, DOC, turbidity, total suspended solids and water level are the opposite during low rainfall intensity. Nitrate, one of the main pollutants in stormwater, was investigated and used as a surrogate parameter for microbial detection. However, the microbiological data (Escherichia coli) from captured storm events showed poor correlations to nitrate and other typical on-line parameters in this study. This is possibly explained by the nature of the stormwater catchment outside of rain events, where the sources of bacteria and nutrients may be physically separated until mixed during surface runoff as a result of rainfall. In addition, the poor correlations among the microbiological data and on-line parameters could be due to the different sources of bacteria and nutrients that were transported to the stormwater drain where sampling and measurement were conducted.


Subject(s)
Water Movements , Water Pollutants, Chemical , Environmental Monitoring/methods , Rain , Spectrum Analysis , Water Pollutants, Chemical/analysis
3.
Bull Environ Contam Toxicol ; 103(5): 710-716, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31482305

ABSTRACT

The manufacturing and consumption of drugs of addiction has increased globally and their widespread occurrence in the environment is an emerging concern. This study evaluated the phytotoxicity of three compounds: methamphetamine, codeine and morphine; commonly reported in Australian urban water, to the aquatic plant Lemna minor under controlled conditions. L. minor was sensitive to lower drug concentrations when administered in multi-compound mixtures (100-500 µg L-1) than when applied individually (range 600-2500 µg L-1), while no adverse effects were observed at environmentally-relevant concentrations (1-5 µg L-1) detected in wastewater effluent. In conclusion, the results show that the concentrations of these compounds discharged into the environment are unlikely to pose adverse phytotoxic effects. These three compounds are known to be the most stable of their group under such conditions indicating that with this respect it is safe to use recycled water for existing regulated reclaimed purposes including agricultural or parklands irrigation or replenishing surface and groundwater. However, more research on the analysis of methamphetamines and opiates in municipal effluents is needed to reassure the likely environmental hazard of these neuroactive drug classes to aquatic organisms. Given the ever-growing production and aquatic disposal of discharge wastewater globally, this study provides timely and valuable insights into the likely drug-related impacts of effluent disposal on aquatic plants in receiving environments.


Subject(s)
Araceae/drug effects , Codeine/toxicity , Illicit Drugs/toxicity , Methamphetamine/toxicity , Morphine/toxicity , Water Pollutants, Chemical/toxicity , Agricultural Irrigation , Australia , Codeine/analysis , Dose-Response Relationship, Drug , Environmental Monitoring , Illicit Drugs/analysis , Methamphetamine/analysis , Morphine/analysis , Recycling , Wastewater/chemistry , Water Pollutants, Chemical/analysis
4.
Chemosphere ; 234: 204-214, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31220654

ABSTRACT

In drinking water treatment, complete mineralization of organophosphorus pesticides (OPPs) by UV-based advanced oxidation processes (UV AOPs) is rarely achieved. The formation of intermediate oxidation byproducts would likely have some profound effects on toxicity of the reaction solutions. This study investigated the intermediate oxidation byproducts, transformation pathway and toxicity of malathion solutions during the treatment processes of UV alone, UV/H2O2, UV/TiO2 and UV/Fenton. The main intermediate oxidation byproducts were derived using ultra-performance liquid chromatography - electrospray - time-of-flight mass spectrometry. Thereby the transformation pathway for each of these treatment processes was proposed. The results indicate that in UV photolysis, the transformation pathway of malathion proceeded initially via cleavage of the phosphorus-sulfur bonds while in photocatalysis, the desulfurization from a PS bond to a PO bond was the primary degradation pathway. Interestingly, only in the UV/TiO2 process a small fraction of malathion was found decomposed via a demethylation reaction. At the same time, a toxicity assessment of the treated solutions was conducted by both luminescence inhibition of Vibrio fischeri and inhibition of acetylcholinesterase (AChE). It was found that after UV AOP treatment, the toxicity of the malathion aqueous solution increased sharply. In contrast, no increase in toxicity was observed for the malathion aqueous solution after UV alone treatment. This study demonstrates that the high removal efficiency achieved by OPPs does not imply that detoxification of the water solution has been achieved. On the contrary, the toxicity of the treated solutions by OPPs may be increased significantly depending on the selected treatment processes.


Subject(s)
Aliivibrio fischeri/growth & development , Insecticides/toxicity , Malathion/toxicity , Photolysis , Ultraviolet Rays , Water Pollutants, Chemical/toxicity , Water Purification/methods , Aliivibrio fischeri/drug effects , Hydrogen Peroxide/chemistry , Hydrogen Peroxide/radiation effects , Iron/chemistry , Iron/radiation effects , Oxidation-Reduction , Titanium/chemistry , Titanium/radiation effects , Water Pollutants, Chemical/chemistry
5.
Sci Total Environ ; 680: 13-22, 2019 Aug 25.
Article in English | MEDLINE | ID: mdl-31100664

ABSTRACT

Drugs of addiction, have been recognized as potential contaminants of concern to the environment. Effluent wastewater discharge is a major source of contamination to aquatic receiving environments. A year-long monitoring program was undertaken in Australia to characterise the fate of four emerging drugs of addiction: methamphetamine; MDMA; pharmaceutical opioids: codeine and morphine and a metabolite: benzoylecgonine in four wastewater treatment plants operating with different secondary treatment technologies: conventional activated sludge (CAS), membrane bioreactors (MBR), integrated fixed-film AS (IFAS) and sequencing batch reactor (SBR). The effect of subsequent tertiary treatment (coagulation/flocculation) on the removal efficiency was also assessed. Drugs were detected in influent and effluent samples (mean concentration ranged from 43-4777 and 17-1721 ng/L, respectively). Treated effluents had noticeably lower levels compared to raw influents. Removal efficiency of compounds depended on the secondary treatment employed, with IFAS and MBR performing the best with significant removal of compounds (≈90%) followed by CAS (54-96%) and lastly SBR (42-83%). Despite the low levels of drugs measured after the secondary treatment, near complete removal after tertiary treatment (≈99%) was recorded, which demonstrated the effectiveness of using the coagulation/flocculation process as an effective step for enhancing the removal efficiency. The levels of drugs were at a low level in the effluents released into the environment and used for recycling and all posed a low environmental risk in urban water courses based on the risk assessment. The information given here provides new and useful information to the water industry and regulators on the efficiency of drug removal in a range of wastewater treatment configurations.


Subject(s)
Environmental Monitoring , Illicit Drugs/analysis , Waste Disposal, Fluid , Water Pollutants, Chemical/analysis , Australia , Recycling , Wastewater
6.
ACS Sens ; 4(6): 1515-1523, 2019 06 28.
Article in English | MEDLINE | ID: mdl-31140789

ABSTRACT

Lipopolysaccharides (LPS) are the major component of the outer membrane of all Gram-negative bacteria and some cyanobacteria and are released during growth and cell death. LPS pose a potential health risk in water, causing acute respiratory illnesses, inhalation fever, and gastrointestinal disorders. The need for rapid and accurate detection of LPS has become a major priority to facilitate more timely and efficacious intervention and, hence, avoid unsafe water distribution. In this context, a porous silicon membrane (pSiM)-based electrochemical biosensor was developed for direct and sensitive detection of LPS. pSiM, featuring arrays of nanochannels, was modified with polymyxin B (PmB), an antimicrobial peptide with strong affinity to LPS. Detection of LPS was based on measuring the changes in the diffusion through the nanochannels of an electroactive species added in solution, caused by the nanochannel blockage upon LPS binding to PmB. Results showed a limit of detection of 1.8 ng/mL, and a linear response up to 10,000 ng/mL spiked in buffer. Selectivity of the sensor toward potential interfering species in water supplies was also assessed. Sensor performance was then evaluated in water samples from a water treatment plant (WTP), and detection of LPS well below the levels encountered in episodes of water contamination and in humidifiers was demonstrated. The same platform was also tested for bacterial detection including Pseudomonas aeruginosa and Escherichia coli spiked in water samples from a WTP. Considering its performance characteristics, this platform represents a promising screening tool to identify the presence of LPS in water supplies and provide early warning of contamination events.


Subject(s)
Biosensing Techniques/methods , Electrochemical Techniques/methods , Lipopolysaccharides/analysis , Water Microbiology , Dental Cements/chemistry , Electrochemical Techniques/instrumentation , Electrodes , Escherichia coli/chemistry , Lipopolysaccharides/metabolism , Membranes, Artificial , Polymyxin B/chemistry , Polymyxin B/metabolism , Pseudomonas aeruginosa/chemistry , Salmonella typhimurium/chemistry
7.
Environ Sci Pollut Res Int ; 26(33): 33816-33826, 2019 Nov.
Article in English | MEDLINE | ID: mdl-29948683

ABSTRACT

The occurrence and fate of five drugs of abuse in raw influent and treated effluent wastewater were investigated over a period of 1 year in the Adelaide region of South Australia. Four wastewater treatment plants were chosen for this study and monitored for five drugs which included cocaine in the form of its metabolite benzoylecgonine (BE), methamphetamine, 3,4-methylenedioxymethamphetamine (MDMA) and two opioids (codeine and morphine) during the period April 2016 to February 2017. Alongside concentrations in raw sewage, the levels of drugs in the treated effluent were assessed and removal efficiencies were calculated. Drug concentrations were measured by mixed-mode solid phase extraction and liquid chromatography coupled to a quadrupole mass spectrometer. Drug concentrations detected in the raw wastewater ranged from 7 to 6510 ng/L and < LOD to 4264 ng/L in treated effluent samples. Drug removal rates varied seasonally and spatially. The mass loads of drugs discharged into the environment were in descending order: codeine > methamphetamine > morphine > MDMA > BE. Results showed that all the targeted drugs were on average incompletely removed by wastewater treatment, with removal performance highest for morphine (94%) and lowest for MDMA (58%). A screening-level environmental risk assessment was subsequently performed for the drugs based on effluent wastewater concentrations. Based on calculated risk quotients, overall environmental risk for these compounds appears low, with codeine and methamphetamine likely to pose the greatest potential risk to receiving environments. Given the recognised limitations of current ecotoxicological models and risk assessment methods for these and other pharmaceutical drugs, the potential for environmental impacts associated with the continuous discharge of these compounds in wastewater effluents should not be overlooked.


Subject(s)
Environmental Monitoring , Illicit Drugs/analysis , Wastewater/chemistry , Water Pollutants, Chemical/analysis , Biomarkers , Chromatography, Liquid , Cocaine/analogs & derivatives , Humans , Methamphetamine/analysis , N-Methyl-3,4-methylenedioxyamphetamine/analysis , Sewage/chemistry , Solid Phase Extraction , South Australia , Waste Disposal, Fluid
8.
ACS Appl Mater Interfaces ; 10(7): 6055-6072, 2018 Feb 21.
Article in English | MEDLINE | ID: mdl-29369608

ABSTRACT

The emergence of nanostructured materials has opened new horizons in the development of next generation biosensors. Being able to control the design of the electrode interface at the nanoscale combined with the intrinsic characteristics of the nanomaterials engenders novel biosensing platforms with improved capabilities. The purpose of this review is to provide a comprehensive and critical overview of the latest trends in emerging nanostructured electrochemical biosensors. A detailed description and discussion of recent approaches to construct label-free electrochemical nanostructured electrodes is given with special focus on pathogen detection for environmental monitoring and food safety. This includes the use of nanoscale materials such as nanotubes, nanowires, nanoparticles, and nanosheets as well as porous nanostructured materials including nanoporous anodic alumina, mesoporous silica, porous silicon, and polystyrene nanochannels. These platforms may pave the way toward the development of point-of-care portable electronic devices for applications ranging from environmental analysis to biomedical diagnostics.


Subject(s)
Nanostructures , Aluminum Oxide , Biosensing Techniques , Electrochemical Techniques , Food , Water
9.
Environ Technol ; 39(11): 1384-1392, 2018 Jun.
Article in English | MEDLINE | ID: mdl-28488926

ABSTRACT

The removal of glyphosate and aminomethylphosphonic acid (AMPA) with synthetic water was carried out on a lab-scale nanofiltration unit using two membranes, NFX and NFW. The presence of humic acid and some inorganic matters (CaCl2 and NaCl) was tested in the experiment. The results demonstrate that NFX exhibits better separation performance than NFW. The herbicide filtration is found to have little effect on the permeate flux as compared to transmembrane pressure. Intermediate concentrations of NaCl act positively on foulant separation, and an increment of 3.3-5.4 percentage points in foulant rejection is obtained with the addition of 100 mg/L of NaCl. In Contrast, CaCl2 has negative effect on foulant separation during nanofiltration. Humic acid alone shows little influence on the rejection performance, whereas it is slightly improved in the coexistence of humic acid and CaCl2. The nanofiltration technology proves to be a good approach to treat the problem of pesticide micropollution in a one-step process. This work clearly shows that the composition of the water matrices may influence the efficiency of the nanofiltration process in terms of the separation of the micropollutants.


Subject(s)
Glycine/analogs & derivatives , Isoxazoles/chemistry , Nanotechnology , Tetrazoles/chemistry , Water Purification , Filtration , Glycine/chemistry , Membranes, Artificial , Water , Glyphosate
10.
Sci Rep ; 7(1): 7490, 2017 08 08.
Article in English | MEDLINE | ID: mdl-28790419

ABSTRACT

A practical fabrication technique is presented to tackle the trade-off between the water flux and salt rejection of thin film composite (TFC) reverse osmosis (RO) membranes through controlled creation of a thinner active selective polyamide (PA) layer. The new thin film nano-composite (TFNC) RO membranes were synthesized with multifunctional poly tannic acid-functionalized graphene oxide nanosheets (pTA-f-GO) embedded in its PA thin active layer, which is produced through interfacial polymerization. The incorporation of pTA-f-GOL into the fabricated TFNC membranes resulted in a thinner PA layer with lower roughness and higher hydrophilicity compared to pristine membrane. These properties enhanced both the membrane water flux (improved by 40%) and salt rejection (increased by 8%) of the TFNC membrane. Furthermore, the incorporation of biocidal pTA-f-GO nanosheets into the PA active layer contributed to improving the antibacterial properties by 80%, compared to pristine membrane. The fabrication of the pTA-f-GO nanosheets embedded in the PA layer presented in this study is a very practical, scalable and generic process that can potentially be applied in different types of separation membranes resulting in less energy consumption, increased cost-efficiency and improved performance.

11.
Water Res ; 124: 713-727, 2017 11 01.
Article in English | MEDLINE | ID: mdl-28843086

ABSTRACT

This review critically evaluates the types and concentrations of key illicit drugs (cocaine, amphetamines, cannabinoids, opioids and their metabolites) found in wastewater, surface water and drinking water sources worldwide and what is known on the effectiveness of wastewater treatment in removing such compounds. It is also important to amass information on the trends in specific drug use as well as the sources of such compounds that enter the environment and we review current international knowledge on this. There are regional differences in the types and quantities of illicit drug consumption and this is reflected in the quantities detected in water. Generally, the levels of illicit drugs in wastewater effluents are lower than in raw influent, indicating that the majority of compounds can be at least partially removed by conventional treatment processes such as activated sludge or trickling filters. However, the literature also indicates that it is too simplistic to assume non-detection equates to drug removal and/or mitigation of associated risks, as there is evidence that some compounds may avoid detection via inadequate sampling and/or analysis protocols, or through conversion to transformation products. Partitioning of drugs from the water to the solids fraction (sludge/biosolids) may also simply shift the potential risk burden to a different environmental compartment and the review found no information on drug stability and persistence in biosolids. Generally speaking, activated sludge-type processes appear to offer better removal efficacy across a range of substances, but the lack of detail in many studies makes it difficult to comment on the most effective process configurations and operations. There is also a paucity of information on the removal effectiveness of alternative treatment processes. Research is also required on natural removal processes in both water and sediments that may over time facilitate further removal of these compounds in receiving environments.


Subject(s)
Environmental Monitoring , Illicit Drugs , Wastewater , Water Pollutants, Chemical , Sewage , Waste Disposal, Fluid , Water
12.
Water Res ; 105: 1-10, 2016 Nov 15.
Article in English | MEDLINE | ID: mdl-27589240

ABSTRACT

Prechlorination is commonly used to minimize operational problems associated with biological growth as well as taste and odor control during drinking water treatment. However, prechlorination can also oxidise micropollutants into intermediate byproducts. This could impose profound effects on the safety of the finished water if the transformed byproducts are more toxic and less removable. This study investigated the effect of prechlorination on decomposition and subsequent removal of the four organophosphorus pesticides (OPPs): chlorpyrifos, diazinon, malathion and tolclofos-methyl using a simulated conventional water treatment process of powdered activated carbon assisted coagulation-sedimentation-filtration (PAC-CSF) and postchlorination. It was found that, following prechlorination, not only did the percentage of OPPs oxidation vary significantly, but also the concentration of transformed oxons, which are more toxic than their parent compounds, increased as the major identified oxidation byproducts in water. Removal of these oxons proved to be more difficult by the PAC-CSF than their parent OPPs, because they are more water soluble and more hydrophilic. Both the OPP oxidation and oxon formation increased with chlorine dose during prechlorination. Meanwhile, the continuing chlorination of OPPs by residual free chlorine during PAC-CSF further complicated the pesticide removal processes, generally resulting in a gradually increased formation of oxons. Moreover, in the final treatment stage of postchlorination, the more chlorine-reactive pesticides, malathion and diazinon, were completely oxidised and the formation of corresponding oxons was increased with the prechlorine dose. In contrast, a certain amount of the less chlorine-reactive pesticide tolclofos-methyl still remained in solution after postchlorination, accompanied by an increased formation of tolclofos-methyl oxon with prechlorine dose. Since the oxons are resistant to further oxidation and less adsorbable during the PAC-CSF process, the gross removal of these pesticides and their oxons decreased with increase of the prechlorine dose. This led to an accumulation of the more toxic oxons in the finished water, especially at higher chlorine doses during prechlorination. The significance of this work is the demonstration that, under circumstances where prechlorination is used and source water contains traces of OPPs, alternative practices should be prioritized to avoid the potential risks involved in consumption of the treated water.


Subject(s)
Pesticides , Water Purification , Chlorine , Chlorpyrifos , Halogenation , Organophosphorus Compounds
13.
ACS Appl Mater Interfaces ; 8(27): 17519-28, 2016 Jul 13.
Article in English | MEDLINE | ID: mdl-27294568

ABSTRACT

Graphene oxide (GO) nanosheets have antibacterial properties that have been exploited as a biocidal agent used on desalination membrane surfaces in recent research. Nonetheless, improved strategies for efficient and stable attachment of GO nanosheets onto the membrane surface are still required for this idea to be commercially viable. To address this challenge, we adopted a novel, single-step surface modification approach using tannic acid cross-linked with polyethylene imine as a versatile platform to immobilize GO nanosheets to the surface of polyamide thin film composite forward osmosis (FO) membranes. An experimental design based on Taguchi's statistical method was applied to optimize the FO processing conditions in terms of water and reverse solute fluxes. Modified membranes were analyzed using water contact angle, adenosine triphosphate bioluminescence, total organic carbon, Fourier transform infrared spectroscopy, ζ potential, X-ray photoelectron spectroscopy, transmission electron microscopy, and atomic force microscopy. These results show that membranes were modified with a nanoscale (<10 nm), smooth, hydrophilic coating that, compared to pristine membranes, improved filtration and significantly mitigated biofouling by 33% due to its extraordinary, synergistic antibacterial properties (99.9%).

14.
ACS Appl Mater Interfaces ; 7(32): 18004-16, 2015 Aug 19.
Article in English | MEDLINE | ID: mdl-26214126

ABSTRACT

Graphene oxide (GO) nanosheets were attached to the polyamide selective layer of thin film composite (TFC) forward osmosis (FO) membranes through a poly L-Lysine (PLL) intermediary using either layer-by-layer or hybrid (H) grafting strategies. Fourier transform infrared spectroscopy, zeta potential, and thermogravimetric analysis confirmed the successful attachment of GO/PLL, the surface modification enhancing both the hydrophilicity and smoothness of the membrane's surface demonstrated by water contact angle, atomic force microscopy, and transmission electron microscopy. The biofouling resistance of the FO membranes determined using an adenosine triphosphate bioluminescence test showed a 99% reduction in surviving bacteria for GO/PLL-H modified membranes compared to pristine membrane. This antibiofouling property of the GO/PLL-H modified membrane was reflected in reduced flux decline compared to all other samples when filtering brackish water under biofouling conditions. Further, the high density and tightly bound GO nanosheets using the hybrid modification reduced the reverse solute flux compared to the pristine, which reflects improved membrane selectivity. These results illustrate that the GO/PLL-H modification is a valuable addition to improve the performance of FO TFC membranes.


Subject(s)
Biofouling , Graphite/chemistry , Membranes, Artificial , Bacteria/drug effects , Microscopy, Atomic Force , Nanostructures/chemistry , Nanostructures/toxicity , Oxides/chemistry , Polylysine/chemistry , Spectroscopy, Fourier Transform Infrared , Surface Properties , Thermogravimetry , Water/chemistry
15.
J Chromatogr A ; 1389: 76-84, 2015 Apr 10.
Article in English | MEDLINE | ID: mdl-25748540

ABSTRACT

Liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis coupled simply with water filtering before injection has proven to be a simple, economic and time-saving method for analyzing trace-level organic pollutants in aqueous environments. However, the linearity, precision and detection limits of such methods for late-eluting analytes were found to be much poorer than for early-eluting ones due to adsorption of the analytes in the operating system, such as sample vial, flow path and sample loop, creating problems in quantitative analysis. Addition of methanol (MeOH) into water samples as a modifier was shown to be effective in alleviating or even eliminating the negative effect on signal intensity for the late-eluting analytes and at the same time being able to reduce certain matrix effects for real water samples. Based on the maximum detection signal intensity obtained on desorption of the analytes with MeOH addition, the ratio of the detection signal intensity without addition of MeOH to the maximum intensity can be used to evaluate the effectiveness of methanol addition. Accordingly, the values of <50%, 50-80%, 80-120% could be used to indicate strong, medium and no effects, respectively. Based on this concept, an external matrix-matched calibration method with the addition of MeOH has been successfully established for analyzing fifteen pesticides with diverse physico-chemical properties in surface and groundwater with good linearity (r(2): 0.9929-0.9996), precision (intra-day relative standard deviation (RSD): 1.4-10.7%, inter-day RSD: 1.5-9.4%), accuracy (76.9-126.7%) and low limits of detection (0.003-0.028µg/L).


Subject(s)
Chromatography, Liquid , Environmental Monitoring/methods , Methanol/chemistry , Pesticides/analysis , Tandem Mass Spectrometry , Water Pollutants, Chemical/analysis , Water/chemistry , Adsorption , Calibration
16.
Water Sci Technol ; 65(7): 1244-51, 2012.
Article in English | MEDLINE | ID: mdl-22437022

ABSTRACT

Wastewaters have the potential to proliferate excessive numbers of cyanobacteria due to high nutrient levels. This could translate to the production of metabolites, such as the saxitoxins, geosmin and 2-methylisoborneol (MIB), which can impair the quality of wastewater destined for re-use. Biological sand filtration was assessed for its ability to remove these metabolites from a wastewater. Results indicated that the sand filter was incapable of effectively removing the saxitoxins and in some instances, the effluent of the sand filter displayed greater toxicity than the influent. Conversely, the sand filter was able to effectively remove geosmin and MIB, with removal attributed to biodegradation. Granular activated carbon was employed as an alternative filter medium to remove the saxitoxins. Results showed similar removals to previous drinking water studies, where efficient removals were initially observed, followed by a decrease in the removal; a consequence of the presence of competing organics which reduced adsorption of the saxitoxins.


Subject(s)
Saxitoxin/isolation & purification , Water Purification/methods , Charcoal , Cyanobacteria/metabolism , Filtration/methods , Saxitoxin/metabolism , Silicon Dioxide
17.
Water Res ; 45(11): 3461-72, 2011 May.
Article in English | MEDLINE | ID: mdl-21529882

ABSTRACT

Granular media filtration was evaluated for the removal of a suite of chemical contaminants that can be found in wastewater. Laboratory- and pilot-scale sand and granular activated carbon (GAC) filters were trialled for their ability to remove atrazine, estrone (E1), 17α-ethynylestradiol (EE2), N-nitrosodimethylamine (NDMA), N-nitrosomorpholine (NMOR) and N-nitrosodiethylamine (NDEA). In general, sand filtration was ineffective in removing the contaminants from a tertiary treated wastewater, with the exception of E1 and EE2, where efficient removals were observed after approximately 150 d. Batch degradation experiments confirmed that the removal of E1 was through biological activity, with a pseudo-first-order degradation rate constant of 7.4 × 10(-3) h(-1). GAC filtration was initially able to effectively remove all contaminants; although removals decreased over time due to competition with other organics present in the water. The only exception was atrazine where removal remained consistently high throughout the experiment. Previously unreported differences were observed in the adsorption of the three nitrosamines, with the ease of removal following the trend, NDEA > NMOR > NDMA, consistent with their hydrophobic character. In most instances the removals from the pilot-scale filters were generally in agreement with the laboratory-scale filter, suggesting that there is potential in using laboratory-scale filters as monitoring tools to evaluate the performance of pilot- and possibly full-scale sand and GAC filters at wastewater treatment plants.


Subject(s)
Endocrine Disruptors/chemistry , Waste Disposal, Fluid/methods , Water Pollutants, Chemical/chemistry , Atrazine/analysis , Atrazine/chemistry , Biodegradation, Environmental , Charcoal/analysis , Charcoal/chemistry , Diethylnitrosamine/analysis , Diethylnitrosamine/chemistry , Dimethylnitrosamine/analysis , Dimethylnitrosamine/chemistry , Endocrine Disruptors/analysis , Estrone/analysis , Estrone/chemistry , Ethinyl Estradiol/analysis , Ethinyl Estradiol/chemistry , Filtration , Nitrosamines/analysis , Nitrosamines/chemistry , Waste Disposal, Fluid/instrumentation , Water Pollutants, Chemical/analysis
18.
J Phycol ; 47(6): 1338-43, 2011 Dec.
Article in English | MEDLINE | ID: mdl-27020357

ABSTRACT

The occurrence of taste and odor episodes attributed to geosmin continues to trouble water utilities worldwide, and only recently have advances been made in our fundamental understanding of the biochemical and genetic mechanisms responsible for the production of geosmin in microorganisms. For the first time, we have examined the expression of the geosmin synthase gene and corresponding geosmin production by Anabaena circinalis Rabenh. ex Bornet et Flahault AWQC318 under conditions of continuous light illumination and the removal of light as a stimulus and demonstrate that the expression of geosmin synthase appears to be constitutive under these conditions. The decrease in geosmin synthase transcription post maximum cell numbers and stationary phase suggests that a decrease in isoprenoid synthesis may occur before a decrease in the transcription of ribosomal units as the process of cell death is initiated.

19.
J Hazard Mater ; 180(1-3): 628-33, 2010 Aug 15.
Article in English | MEDLINE | ID: mdl-20466484

ABSTRACT

Microcystins are potent hepatotoxins that can be produced by cyanobacteria. These organisms can proliferate in wastewaters due to a number of factors including high concentrations of nutrients for growth. As treated wastewaters are now being considered as supplementary drinking water sources, in addition to their frequent use for irrigated agriculture, it is imperative that these wastewaters are free of toxins such as microcystins. This study investigated the potential for biodegradation of microcystin-LR (MCLR) in wastewaters through a biological sand filtration experiment and in static batch reactor experiments. MCLR was effectively removed at a range of concentrations and at various temperatures, with degradation attributed to the action of microorganisms indigenous to the wastewaters. No hepatotoxic by-products were detected following the degradation of MCLR as determined by a protein phosphatase inhibition assay. Using TaqMan polymerase chain reaction, the first gene involved in bacterial degradation of MCLR (mlrA) was detected and the responsible bacteria shown to increase with the amount of MCLR being degraded. This finding suggested that the degradation of MCLR was dependent upon the abundance of MCLR-degrading organisms present within the wastewater, and that MCLR may provide bacteria with a significant carbon source for proliferation; in turn increasing MCLR removal.


Subject(s)
Microcystins/metabolism , Water Pollutants/metabolism , Chromatography, High Pressure Liquid , Marine Toxins , Polymerase Chain Reaction
20.
Appl Environ Microbiol ; 75(15): 5167-9, 2009 Aug.
Article in English | MEDLINE | ID: mdl-19502429

ABSTRACT

We report for the first time a quantitative mlrA gene-directed TaqMan PCR assay for the rapid detection of microcystin-degrading bacteria. This was applied, in combination with 16S ribosomal DNA-directed quantitative PCR and denaturing gradient gel electrophoresis, to study virgin sand filter column biofilm development and to correlate mlrA gene abundance with microcystin removal efficiency.


Subject(s)
Bacteria/isolation & purification , Bacterial Proteins/genetics , Biofilms , Colony Count, Microbial/methods , Microcystins/metabolism , Polymerase Chain Reaction/methods , Soil Microbiology , Cluster Analysis , DNA Fingerprinting , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , Electrophoresis, Polyacrylamide Gel/methods , Molecular Sequence Data , Nucleic Acid Denaturation , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Water Purification
SELECTION OF CITATIONS
SEARCH DETAIL
...