Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Microb Ecol ; 78(2): 528-533, 2019 Aug.
Article in English | MEDLINE | ID: mdl-30499007

ABSTRACT

Harvest residue management is a key issue for the sustainability of Eucalyptus plantations established on poor soils. Soil microbial communities contribute to soil fertility by the decomposition of the organic matter (OM), but little is known about the effect of whole-tree harvesting (WTH) in comparison to stem only harvesting (SOH) on soil microbial functional diversity in Eucalyptus plantations. We studied the effects of harvest residue management (branches, leaves, bark) of Eucalyptus grandis trees on soil enzymatic activities and community-level physiological profiles in a Brazilian plantation. We measured soil microbial enzymatic activities involved in OM decomposition and we compared the community level physiological profiles (CLPP) of the soil microbes in WTH and SOH plots. WTH decreased enzyme activities and catabolic potential of the soil microbial community. Furthermore, these negative effects on soil functional diversity were mainly observed below the 0-5 cm layer (5-10 and 10-20 cm), suggesting that WTH can be harmful to the soil health in these plantations.


Subject(s)
Bacteria/enzymology , Bacterial Proteins/metabolism , Crop Production/methods , Eucalyptus/chemistry , Soil Microbiology , Soil/chemistry , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Bacterial Proteins/analysis , Brazil , Eucalyptus/growth & development , Microbiota , Plant Stems/chemistry
2.
Plant Cell Environ ; 40(8): 1592-1608, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28382683

ABSTRACT

In agroforestry systems, shade trees strongly affect the physiology of the undergrown crop. However, a major paradigm is that the reduction in absorbed photosynthetically active radiation is, to a certain extent, compensated by an increase in light-use efficiency, thereby reducing the difference in net primary productivity between shaded and non-shaded plants. Due to the large spatial heterogeneity in agroforestry systems and the lack of appropriate tools, the combined effects of such variables have seldom been analysed, even though they may help understand physiological processes underlying yield dynamics. In this study, we monitored net primary productivity, during two years, on scales ranging from individual coffee plants to the entire plot. Absorbed radiation was mapped with a 3D model (MAESPA). Light-use efficiency and net assimilation rate were derived for each coffee plant individually. We found that although irradiance was reduced by 60% below crowns of shade trees, coffee light-use efficiency increased by 50%, leaving net primary productivity fairly stable across all shade levels. Variability of aboveground net primary productivity of coffee plants was caused primarily by the age of the plants and by intraspecific competition among them (drivers usually overlooked in the agroforestry literature) rather than by the presence of shade trees.


Subject(s)
Agriculture , Coffea/physiology , Coffea/radiation effects , Forestry , Light , Biomass , Linear Models , Microclimate , Plant Leaves/physiology , Plant Leaves/radiation effects , Trees/physiology , Trees/radiation effects
SELECTION OF CITATIONS
SEARCH DETAIL