Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Data ; 10(1): 59, 2023 01 28.
Article in English | MEDLINE | ID: mdl-36709323

ABSTRACT

Photovoltaic (PV) energy generation plays a crucial role in the energy transition. Small-scale, rooftop PV installations are deployed at an unprecedented pace, and their safe integration into the grid requires up-to-date, high-quality information. Overhead imagery is increasingly being used to improve the knowledge of rooftop PV installations with machine learning models capable of automatically mapping these installations. However, these models cannot be reliably transferred from one region or imagery source to another without incurring a decrease in accuracy. To address this issue, known as distribution shift, and foster the development of PV array mapping pipelines, we propose a dataset containing aerial images, segmentation masks, and installation metadata (i.e., technical characteristics). We provide installation metadata for more than 28000 installations. We supply ground truth segmentation masks for 13000 installations, including 7000 with annotations for two different image providers. Finally, we provide installation metadata that matches the annotation for more than 8000 installations. Dataset applications include end-to-end PV registry construction, robust PV installations mapping, and analysis of crowdsourced datasets.

2.
Clim Serv ; 27: 100318, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35992963

ABSTRACT

We demonstrate levels of skill for forecasts of seasonal-mean wind speed and solar irradiance in Europe, using seasonal forecast systems available from the Copernicus Climate Change Service (C3S). While skill is patchy, there is potential for the development of climate services for the energy sector. Following previous studies, we show that, where there is skill, a simple linear regression-based method using the hindcast and forecast ensemble means provides a straightforward approach for producing calibrated probabilistic seasonal forecasts. This method extends naturally to using a larger-scale feature of the climate, such as the North Atlantic Oscillation, as the climate model predictor, and we show that this provides opportunities to improve the skill in some cases. We further demonstrate that, on seasonal-average and regional (e.g. national) average scales, wind and solar power generation are highly correlated with single climate variables (wind speed and irradiance). The detailed non-linear transformations from meteorological quantities to energy quantities, which are essential for detailed simulation of power system operations, are usually not necessary when forecasting gross wind or solar generation potential at seasonal-mean regional-mean scales. Together, our results demonstrate that where there is skill in seasonal forecasts of wind speed and irradiance, or a correlated larger-scale climate predictor, skilful forecasts of seasonal mean wind and solar power generation can be made based on the climate variable alone, without requiring complex transformations. This greatly simplifies the process of developing a useful seasonal climate service.

SELECTION OF CITATIONS
SEARCH DETAIL
...