Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Neurotrauma ; 35(24): 2924-2940, 2018 12 15.
Article in English | MEDLINE | ID: mdl-29877129

ABSTRACT

Spinal cord injuries (SCI) are disastrous neuropathologies causing permanent disabilities. The availability of different strains of mice is valuable for studying the pathophysiological mechanisms involved in SCI. However, strain differences have a profound effect on spontaneous functional recovery after SCI. CX3CR1+/eGFP and Aldh1l1-EGFP mice that express green fluorescent protein in microglia/monocytes and astrocytes, respectively, are particularly useful to study glial reactivity. Whereas CX3CR1+/eGFP mice have C57BL/6 background, Aldh1l1-EGFP are in Swiss Webster background. We first assessed spontaneous functional recovery in CX3CR1+/eGFP and Aldh1l1-EGFP mice over 6 weeks after lateral spinal cord hemisection. Second, we carried out a longitudinal follow-up of lesion evolution using in vivo T2-weighted magnetic resonance imaging (MRI). Finally, we performed in-depth analysis of the spinal cord tissue using ex vivo T2-weighted MRI as well as detailed histology. We demonstrate that CX3CR1+/eGFP mice have improved functional recovery and reduced anxiety after SCI compared with Aldh1l1-EGFP mice. We also found a strong correlation between in vivo MRI, ex vivo MRI, and histological analyses of the injured spinal cord in both strain of mice. All three modalities revealed no difference in lesion extension and volume between the two strains of mice. Importantly, histopathological analysis identified decreased gliosis and increased serotonergic axons in CX3CR1+/eGFP compared with Aldh1l1-EGFP mice following SCI. These results thus suggest that the strain-dependent improved functional recovery after SCI may be linked with reduced gliosis and increased serotonergic innervation.


Subject(s)
Gliosis/pathology , Recovery of Function/physiology , Spinal Cord Injuries/pathology , Spinal Cord Injuries/physiopathology , Animals , Longitudinal Studies , Magnetic Resonance Imaging , Mice , Mice, Inbred C57BL
2.
Neurotherapeutics ; 15(3): 751-769, 2018 07.
Article in English | MEDLINE | ID: mdl-29181770

ABSTRACT

Spinal cord injuries (SCI) lead to major disabilities affecting > 2.5 million people worldwide. Major shortcomings in clinical translation result from multiple factors, including species differences, development of moderately predictive animal models, and differences in methodologies between preclinical and clinical studies. To overcome these obstacles, we first conducted a comparative neuroanatomical analysis of the spinal cord between mice, Microcebus murinus (a nonhuman primate), and humans. Next, we developed and characterized a new model of lateral spinal cord hemisection in M. murinus. Over a 3-month period after SCI, we carried out a detailed, longitudinal, behavioral follow-up associated with in vivo magnetic resonance imaging (1H-MRI) monitoring. Then, we compared lesion extension and tissue alteration using 3 methods: in vivo 1H-MRI, ex vivo 1H-MRI, and classical histology. The general organization and glial cell distribution/morphology in the spinal cord of M. murinus closely resembles that of humans. Animals assessed at different stages following lateral hemisection of the spinal cord presented specific motor deficits and spinal cord tissue alterations. We also found a close correlation between 1H-MRI signal and microglia reactivity and/or associated post-trauma phenomena. Spinal cord hemisection in M. murinus provides a reliable new nonhuman primate model that can be used to promote translational research on SCI and represents a novel and more affordable alternative to larger primates.


Subject(s)
Disease Models, Animal , Spinal Cord Injuries/pathology , Spinal Cord Injuries/physiopathology , Translational Research, Biomedical/methods , Animals , Calcium-Binding Proteins , Cheirogaleidae , DNA-Binding Proteins/metabolism , Exploratory Behavior , Female , Follow-Up Studies , Functional Laterality , Glial Fibrillary Acidic Protein/metabolism , Humans , Magnetic Resonance Imaging , Male , Mice , Microfilament Proteins , Microglia/pathology , Middle Aged , Muscle Strength/physiology , Neuromuscular Junction/pathology , Psychomotor Performance/physiology , Species Specificity , Spinal Cord/pathology , Time Factors , Tritium
SELECTION OF CITATIONS
SEARCH DETAIL
...