Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Transl Res ; 178: 95-106.e1, 2016 12.
Article in English | MEDLINE | ID: mdl-27513209

ABSTRACT

Coagulation is an important pathway in the pathophysiology of ischemia-reperfusion injuries. In particular, deceased after circulatory death (DCD) donors undergo a no-flow period, a strong activator of coagulation. Hence, therapies influencing the coagulation cascade must be developed. We evaluated the effect of a new highly specific and effective anti-Xa/IIa molecule, with an integrated innovative antidote site (EP217609), in a porcine preclinical model mimicking injuries observed in DCD donor kidney transplantation. Kidneys were clamped for 60 minutes (warm ischemia), then flushed and preserved for 24 hours at 4°C in University of Wisconsin (UW) solution (supplemented or not). EP217609-supplemented UW solution (UW-EP), compared with unfractionated heparin-supplemented UW solution (UW-UFH) or UW alone (UW). A mechanistic investigation was conducted in vitro: addition of EP217609 to endothelial cells during hypoxia at 4°C in the UW solution inhibited thrombin generation during reoxygenation at 37°C in human plasma and reduced tumor necrosis factor alpha, intercellular adhesion molecule 1, and vascular cell adhesion molecule 1 messenger RNA cell expressions. In vivo, function recovery was markedly improved in the UW-EP group. Interestingly, levels of thrombin-antithrombin complexes (reflecting thrombin generation) were reduced 60 minutes after reperfusion in the UW-EP group. In addition, 3 months after transplantation, lower fibrosis, epithelial-mesenchymal transition, inflammation, and leukocyte infiltration were observed. Using this new dual anticoagulant, anti-Xa/IIa activity during kidney flush and preservation is protected by reducing thrombin generation at revascularization, improving early function recovery, and decreasing chronic lesions. Such an easy-to-deploy clinical strategy could improve marginal graft outcome.


Subject(s)
Factor Xa/metabolism , Kidney Transplantation , Prothrombin/antagonists & inhibitors , Reperfusion Injury/enzymology , Reperfusion Injury/pathology , Animals , Biomarkers/metabolism , Biotin/analogs & derivatives , Biotin/pharmacology , Blood Coagulation/drug effects , Cold Temperature , Endothelial Cells/metabolism , Epithelial-Mesenchymal Transition/drug effects , Factor Xa Inhibitors , Fibrosis , Humans , Hypoxia/complications , Inflammation/pathology , Kidney/drug effects , Kidney Function Tests , Leukocytes/drug effects , Leukocytes/pathology , Models, Animal , Oligosaccharides/pharmacology , Prothrombin/metabolism , Sus scrofa , Thrombin/metabolism
2.
Transplant Res ; 3: 13, 2014.
Article in English | MEDLINE | ID: mdl-24999383

ABSTRACT

BACKGROUND: Extracorporeal membranous oxygenation is proposed for abdominal organ procurement from donation after circulatory determination of death (DCD). In France, the national Agency of Biomedicine supervises the procurement of kidneys from DCD, specifying the durations of tolerated warm and cold ischemia. However, no study has determined the optimal conditions of this technique. The aim of this work was to develop a preclinical model of DCD using abdominal normothermic oxygenated recirculation (ANOR). In short, our objectives are to characterize the mechanisms involved during ANOR and its impact on abdominal organs. METHODS: We used Large White pigs weighing between 45 and 55 kg. After 30 minutes of potassium-induced cardiac arrest, the descending thoracic aorta was clamped and ANOR set up between the inferior vena cava and the abdominal aorta for 4 hours. Hemodynamic, respiratory and biochemical parameters were collected. Blood gasometry and biochemistry analysis were performed during the ANOR procedure. RESULTS: Six ANOR procedures were performed. The surgical procedure is described and intraoperative parameters and biological data are presented. Pump flow rates were between 2.5 and 3 l/min. Hemodynamic, respiratory, and biochemical objectives were achieved under reproducible conditions. Interestingly, animals remained hemodynamically stable following the targeted protocol. Arterial pH was controlled, and natremia and renal function remained stable 4 hours after the procedure was started. Decreased hemoglobin and serum proteins levels, concomitant with increased lactate dehydrogenase activity, were observed as a consequence of the surgery. The serum potassium level was increased, owing to the extracorporeal circulation circuit. CONCLUSIONS: Our ANOR model is the closest to clinical conditions reported in the literature and will allow the study of the systemic and abdominal organ impact of this technique. The translational relevance of the pig will permit the determination of new biomarkers and protocols to improve DCD donor management.

SELECTION OF CITATIONS
SEARCH DETAIL
...