Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev E ; 108(4-1): 044307, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37978685

ABSTRACT

We consider an adaptive network of Kuramoto oscillators with purely dyadic coupling, where the adaption is proportional to the degree of the global order parameter. We find only the continuous transition to synchronization via the pitchfork bifurcation, an abrupt synchronization (desynchronization) transition via the pitchfork (saddle-node) bifurcation resulting in the bistable region R_{1}. This is a smooth continuous transition to a weakly synchronized state via the pitchfork bifurcation followed by a subsequent abrupt transition to a strongly synchronized state via a second saddle-node bifurcation along with an abrupt desynchronization transition via the first saddle-node bifurcation resulting in the bistable region R_{2} between the weak and strong synchronization. The transition goes from the bistable region R_{1} to the bistable region R_{2}, and transition from the incoherent state to the bistable region R_{2} as a function of the coupling strength for various ranges of the degree of the global order parameter and the adaptive coupling strength. We also find that the phase-lag parameter enlarges the spread of the weakly synchronized state and the bistable states R_{1} and R_{2} to a large region of the parameter space. We also derive the low-dimensional evolution equations for the global order parameters using the Ott-Antonsen ansatz. Further, we also deduce the pitchfork, first and second saddle-node bifurcation conditions, which is in agreement with the simulation results.

2.
Eur Phys J Plus ; 138(2): 138, 2023.
Article in English | MEDLINE | ID: mdl-36785810

ABSTRACT

Monkeypox is a zoonotic disease caused by a virus that is a member of the orthopox genus, which has been causing an outbreak since May 2022 around the globe outside of its country of origin Democratic Republic of the Congo, Africa. Here we systematically analyze the data of cumulative infection per day adapting model-free analysis, in particular, statistically using the power law distribution, and then separately we use reservoir computing-based Echo state network (ESN) to predict and forecast the disease spread. We also use the power law to characterize the country-specific infection rate which will characterize the growth pattern of the disease spread such as whether the disease spread reached a saturation state or not. The results obtained from power law method were then compared with the outbreak of the smallpox virus in 1907 in Tokyo, Japan. The results from the machine learning-based method are also validated by the power law scaling exponent, and the correlation has been reported.

3.
Eur Phys J Plus ; 137(9): 1003, 2022.
Article in English | MEDLINE | ID: mdl-36092468

ABSTRACT

COVID-19 will be a continuous threat to human population despite having a few vaccines at hand until we reach the endemic state through natural herd immunity and total immunization through universal vaccination. However, the vaccine acts as a practical tool for reducing the massive public health problem and the emerging economic consequences that the continuing COVID -19 epidemic is causing worldwide, while the vaccine efficacy wanes. In this work, we propose and analyze an epidemic model of Susceptible-Exposed-Infected-Recovered-Vaccinated population taking into account the rate of vaccination and vaccine waning. The dynamics of the model has been investigated, and the condition for a disease-free endemic equilibrium state is obtained. Further, the analysis is extended to study the COVID-19 spread in India by considering the availability of vaccines and the related critical parameters such as vaccination rate, vaccine efficacy and waning of vaccine's impact on deciding the emerging fate of this epidemic. We have also discussed the conditions for herd immunity due to vaccinated individuals among the people. Our results highlight the importance of vaccines, the effectiveness of booster vaccination in protecting people from infection, and their importance in epidemic and pandemic modeling.

SELECTION OF CITATIONS
SEARCH DETAIL
...