Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
J Genet Genomics ; 50(4): 241-252, 2023 04.
Article in English | MEDLINE | ID: mdl-36566016

ABSTRACT

Barley (Hordeum vulgare ssp. vulgare) is one of the first crops to be domesticated and is adapted to a wide range of environments. Worldwide barley germplasm collections possess valuable allelic variations that could further improve barley productivity. Although barley genomics has offered a global picture of allelic variation among varieties and its association with various agronomic traits, polymorphisms from East Asian varieties remain scarce. In this study, we analyze exome polymorphisms in a panel of 274 barley varieties collected worldwide, including 137 varieties from East Asian countries and Ethiopia. We reveal the underlying population structure and conduct genome-wide association studies for 10 agronomic traits. Moreover, we examin genome-wide associations for traits related to grain size such as awn length and glume length. Our results demonstrate the value of diverse barley germplasm panels containing Eastern varieties, highlighting their distinct genomic signatures relative to Western subpopulations.


Subject(s)
Hordeum , Hordeum/genetics , Genome-Wide Association Study , Exome/genetics , Phenotype , Edible Grain/genetics , Genetic Variation/genetics
2.
Int J Mol Sci ; 22(3)2021 Jan 20.
Article in English | MEDLINE | ID: mdl-33498523

ABSTRACT

Climate resilience of crops is critical for global food security. Understanding the genetic basis of plant responses to ambient environmental changes is key to developing resilient crops. To detect genetic factors that set flowering time according to seasonal temperature conditions, we evaluated differences of flowering time over years by using chromosome segment substitution lines (CSSLs) derived from japonica rice cultivars "Koshihikari" × "Khao Nam Jen", each with different robustness of flowering time to environmental fluctuations. The difference of flowering times in 9 years' field tests was large in "Khao Nam Jen" (36.7 days) but small in "Koshihikari" (9.9 days). Part of this difference was explained by two QTLs. A CSSL with a "Khao Nam Jen" segment on chromosome 11 showed 28.0 days' difference; this QTL would encode a novel flowering-time gene. Another CSSL with a segment from "Khao Nam Jen" in the region around Hd16 on chromosome 3 showed 23.4 days" difference. A near-isogenic line (NIL) for Hd16 showed 21.6 days' difference, suggesting Hd16 as a candidate for this QTL. RNA-seq analysis showed differential expression of several flowering-time genes between early and late flowering seasons. Low-temperature treatment at panicle initiation stage significantly delayed flowering in the CSSL and NIL compared with "Koshihikari". Our results unravel the molecular control of flowering time under ambient temperature fluctuations.


Subject(s)
Acclimatization , Flowers/growth & development , Oryza/genetics , Quantitative Trait Loci , Flowers/genetics , Oryza/growth & development , Plant Proteins/genetics , Plant Proteins/metabolism
3.
Commun Biol ; 3(1): 173, 2020 04 15.
Article in English | MEDLINE | ID: mdl-32296118

ABSTRACT

In order to train the neural network for plant phenotyping, a sufficient amount of training data must be prepared, which requires time-consuming manual data annotation process that often becomes the limiting step. Here, we show that an instance segmentation neural network aimed to phenotype the barley seed morphology of various cultivars, can be sufficiently trained purely by a synthetically generated dataset. Our attempt is based on the concept of domain randomization, where a large amount of image is generated by randomly orienting the seed object to a virtual canvas. The trained model showed 96% recall and 95% average Precision against the real-world test dataset. We show that our approach is effective also for various crops including rice, lettuce, oat, and wheat. Constructing and utilizing such synthetic data can be a powerful method to alleviate human labor costs for deploying deep learning-based analysis in the agricultural domain.


Subject(s)
Crops, Agricultural/physiology , Hordeum/physiology , Image Processing, Computer-Assisted , Neural Networks, Computer , Seeds/physiology , Deep Learning , Phenotype
4.
Plant Cell Physiol ; 61(8): 1438-1448, 2020 Aug 01.
Article in English | MEDLINE | ID: mdl-32294217

ABSTRACT

Agronomically important traits often develop during the later stages of crop growth as consequences of various plant-environment interactions. Therefore, the temporal physiological states that change and accumulate during the crop's life course can significantly affect the eventual phenotypic differences in agronomic traits among crop varieties. Thus, to improve productivity, it is important to elucidate the associations between temporal physiological responses during the growth of different crop varieties and their agronomic traits. However, data representing the dynamics and diversity of physiological states in plants grown under field conditions are sparse. In this study, we quantified the endogenous levels of five phytohormones - auxin, cytokinins (CKs), ABA, jasmonate and salicylic acid - in the leaves of eight diverse barley (Hordeum vulgare) accessions grown under field conditions sampled weekly over their life course to assess the ongoing fluctuations in hormone levels in the different accessions under field growth conditions. Notably, we observed enormous changes over time in the development-related plant hormones, such as auxin and CKs. Using 3' RNA-seq-based transcriptome data from the same samples, we investigated the expression of barley genes orthologous to known hormone-related genes of Arabidopsis throughout the life course. These data illustrated the dynamics and diversity of the physiological states of these field-grown barley accessions. Together, our findings provide new insights into plant-environment interactions, highlighting that there is cultivar diversity in physiological responses during growth under field conditions.


Subject(s)
Hordeum/physiology , Plant Growth Regulators/physiology , Abscisic Acid/analysis , Cyclopentanes/analysis , Cytokinins/analysis , Cytokinins/physiology , Hordeum/chemistry , Hordeum/growth & development , Indoleacetic Acids/analysis , Oxylipins/analysis , Plant Growth Regulators/analysis , Salicylic Acid/analysis
5.
Nat Food ; 1(8): 489-499, 2020 Aug.
Article in English | MEDLINE | ID: mdl-37128077

ABSTRACT

Barley is the fourth most produced cereal crop in the world and one of the major dietary sources of cadmium (Cd), which poses serious threats to human health. Here, we identify a gene that encodes a P-type heavy metal ATPase 3 (HvHMA3) responsible for grain Cd accumulation in barley. HvHMA3 from the high Cd barley variety Haruna Nijo in Japan and the low Cd variety BCS318 in Afghanistan shared 97% identity at the amino acid level. In addition, the HvHMA3 from both varieties showed similar transport activity for Cd and the same subcellular localization at the tonoplast. However, the expression of HvHMA3 was double in BCS318 than in Haruna Nijo. A 3.3-kilobase Sukkula-like transposable element was found to be inserted upstream of the gene in the low Cd variety, which functioned as a promoter and enhanced the expression of HvHMA3. Introgression of this insertion to an elite barley cultivar through backcrossing resulted in decreased Cd accumulation in the grain grown in Cd-contaminated soil without yield penalty. The decreased Cd accumulation resulting from the insertion was also found in some other barley landraces in the world. Our results indicate that insertion of the Sukkula-like transposable element plays an important role in upregulating HvHMA3 expression.

6.
Plant Physiol ; 178(2): 716-727, 2018 10.
Article in English | MEDLINE | ID: mdl-30093528

ABSTRACT

Aluminum (Al) toxicity is a major stress factor limiting crop productivity in acid soil. Although there is great genotypic variation in tolerance to Al toxicity, the underlying molecular mechanisms are poorly understood. Here, we report that, in barley (Hordeum vulgare), the fourth largest cereal crop produced in the world, both retrotransposon insertion and DNA methylation are involved in regulating differential Al tolerance. HvAACT1 is a major gene responsible for citrate secretion from the roots for external detoxification of Al. A multiretrotransposon-like (MRL) sequence insertion at least 15.3 kb in length was detected in the upstream genomic region of HvAACT1 that displayed promoter activity and significantly enhanced HvAACT1 expression, especially in the root tips of Al-tolerant accessions. Furthermore, in a number of accessions with low levels of HvAACT1 expression, this MRL insertion was present but highly methylated. Geographical analysis showed that accessions with this MRL insertion are distributed mainly in European areas with acid soils. Two wild barley accessions were found to possess this MRL insertion, but with a high degree of methylation. These results indicate that the MRL insertion and its degree of DNA methylation influence HvAACT1 expression and that demethylation of this MRL insertion, which facilitates adaptation to acid soils, occurred following barley domestication. Moreover, our results indicate that barley accessions in East Asia and Europe have developed independent but equivalent strategies to withstand Al toxicity in acid soils.


Subject(s)
Aluminum/toxicity , Hordeum/genetics , Retroelements/genetics , Adaptation, Physiological , DNA Methylation , Genotype , Hordeum/drug effects , Hordeum/physiology , Promoter Regions, Genetic/genetics
7.
Sci Rep ; 6: 38554, 2016 12 08.
Article in English | MEDLINE | ID: mdl-27929044

ABSTRACT

Adaptation to edaphic stress may have a key role in plant species range expansion. Aegilops tauschii Coss., the common wheat's D-genome progenitor native to the Transcaucasus-Middle East region, is a good model to study the relationships between soil salinity and plant distributions: one of its intraspecific sublineages, TauL1b, drove the long-distance eastward expansion of this species range reaching semi-arid-central Asia. Salt tolerance during germination and seedling growth was evaluated in 206 Ae. tauschii accessions by treating seeds with NaCl solutions differing in concentrations. Differences in natural variation patterns were analyzed between sublineages and associated with natural edaphic condition variables, and then compared with reproductive trait variation patterns. The natural variations observed in NaCl-induced-stress tolerance had clear geographic and genetic structure. Seedling growth significantly increased in the TauL1b accessions that were collected from salt-affected soil habitats, whereas germinability did not. Principal component analysis suggested that the NaCl-induced-stress tolerances and reproductive traits might have had a similar degree of influence on Ae. tauschii's eastward range expansion. Adaptation to salt-affected soils through increased seedling growth was an important factor for the species' successful colonization of the semi-arid central Asian habitats. TauL1b accessions might provide useful genetic resources for salt-tolerant wheat breeds.


Subject(s)
Germination/physiology , Host Specificity , Poaceae/growth & development , Salt Tolerance/physiology , Seedlings/growth & development , Ecosystem , Ecotype , Genetic Variation , Geography , Germination/drug effects , Phenotype , Poaceae/drug effects , Poaceae/genetics , Principal Component Analysis , Reproduction/drug effects , Salt Tolerance/drug effects , Seedlings/drug effects , Sodium Chloride/pharmacology , Species Specificity , Stress, Physiological/drug effects
8.
Sci Rep ; 6: 33199, 2016 09 12.
Article in English | MEDLINE | ID: mdl-27616653

ABSTRACT

Barley is one of the founder crops of Old world agriculture and has become the fourth most important cereal worldwide. Information on genome-scale DNA polymorphisms allows elucidating the evolutionary history behind domestication, as well as discovering and isolating useful genes for molecular breeding. Deep transcriptome sequencing enables the exploration of sequence variations in transcribed sequences; such analysis is particularly useful for species with large and complex genomes, such as barley. In this study, we performed RNA sequencing of 20 barley accessions, comprising representatives of several biogeographic regions and a wild ancestor. We identified 38,729 to 79,949 SNPs in the 19 domesticated accessions and 55,403 SNPs in the wild barley and revealed their genome-wide distribution using a reference genome. Genome-scale comparisons among accessions showed a clear differentiation between oriental and occidental barley populations. The results based on population structure analyses provide genome-scale properties of sub-populations grouped to oriental, occidental and marginal groups in barley. Our findings suggest that the oriental population of domesticated barley has genomic variations distinct from those in occidental groups, which might have contributed to barley's domestication.


Subject(s)
Hordeum/genetics , Polymorphism, Single Nucleotide , Base Sequence , DNA, Plant/genetics , Domestication , Evolution, Molecular , Genome, Plant , Molecular Sequence Annotation , Phylogeny , Phylogeography , Sequence Analysis, DNA , Sequence Analysis, RNA , Transcriptome
9.
Front Plant Sci ; 6: 740, 2015.
Article in English | MEDLINE | ID: mdl-26442053

ABSTRACT

Crops are exposed to various environmental stresses in the field throughout their life cycle. Modern plant science has provided remarkable insights into the molecular networks of plant stress responses in laboratory conditions, but the responses of different crops to environmental stresses in the field need to be elucidated. Recent advances in omics analytical techniques and information technology have enabled us to integrate data from a spectrum of physiological metrics of field crops. The interdisciplinary efforts of plant science and data science enable us to explore factors that affect crop productivity and identify stress tolerance-related genes and alleles. Here, we describe recent advances in technologies that are key components for data driven crop design, such as population genomics, chronological omics analyses, and computer-aided molecular network prediction. Integration of the outcomes from these technologies will accelerate our understanding of crop phenology under practical field situations and identify key characteristics to represent crop stress status. These elements would help us to genetically engineer "designed crops" to prevent yield shortfalls because of environmental fluctuations due to future climate change.

10.
Plant Physiol ; 163(2): 804-14, 2013 Oct.
Article in English | MEDLINE | ID: mdl-24014575

ABSTRACT

The spring-type near isogenic line (NIL) of the winter-type barley (Hordeum vulgare ssp. vulgare) var. Hayakiso 2 (HK2) was developed by introducing VERNALIZATION-H1 (Vrn-H1) for spring growth habit from the spring-type var. Indo Omugi. Contrary to expectations, the spring-type NIL flowered later than winter-type HK2. This phenotypic difference was controlled by a single gene, which cosegregated only with phytochrome C (HvPhyC) among three candidates around the Vrn-H1 region (Vrn-H1, HvPhyC, and CASEIN KINASE IIα), indicating that HvPhyC was the most likely candidate gene. Compared with the late-flowering allele HvPhyC-l from the NIL, the early-flowering allele HvPhyC-e from HK2 had a single nucleotide polymorphism T1139C in exon 1, which caused a nonsynonymous amino acid substitution of phenylalanine at position 380 by serine in the functionally essential GAF (3', 5'-cyclic-GMP phosphodiesterase, adenylate cyclase, formate hydrogen lyase activator protein) domain. Functional assay using a rice (Oryza sativa) phyA phyC double mutant line showed that both of the HvPhyC alleles are functional, but HvPhyC-e may have a hyperfunction. Expression analysis using NILs carrying HvPhyC-e and HvPhyC-l (NIL [HvPhyC-e] and NIL [HvPhyC-l], respectively) showed that HvPhyC-e up-regulated only the flowering promoter FLOWERING LOCUS T1 by bypassing the circadian clock genes and flowering integrator CONSTANS1 under a long photoperiod. Consistent with the up-regulation, NIL (HvPhyC-e) flowered earlier than NIL (HvPhyC-l) under long photoperiods. These results implied that HvPhyC is a key factor to control long-day flowering directly.


Subject(s)
Flowers/physiology , Hordeum/physiology , Photoperiod , Phytochrome/metabolism , Amino Acid Sequence , Crosses, Genetic , Epistasis, Genetic , Flowers/genetics , Gene Expression Regulation, Plant , Genes, Plant/genetics , Genetic Linkage , Haplotypes/genetics , Hordeum/genetics , Inbreeding , Molecular Sequence Data , Oryza/genetics , Phytochrome/chemistry , Phytochrome/genetics , Plants, Genetically Modified , Transformation, Genetic
11.
Nat Commun ; 3: 713, 2012 Mar 06.
Article in English | MEDLINE | ID: mdl-22395604

ABSTRACT

Originating from the Fertile Crescent in the Middle East, barley has now been cultivated widely on different soil types including acid soils, where aluminium toxicity is a major limiting factor. Here we show that the adaptation of barley to acid soils is achieved by the modification of a single gene (HvAACT1) encoding a citrate transporter. We find that the primary function of this protein is to release citrate from the root pericycle cells to the xylem to facilitate the translocation of iron from roots to shoots. However, a 1-kb insertion in the upstream of the HvAACT1 coding region occurring only in the Al-tolerant accessions, enhances its expression and alters the location of expression to the root tips. The altered HvAACT1 has an important role in detoxifying aluminium by secreting citrate to the rhizosphere. Thus, the insertion of a 1-kb sequence in the HvAACT1 upstream enables barley to adapt to acidic soils.


Subject(s)
Aluminum/toxicity , Carrier Proteins/genetics , Hordeum/genetics , Adaptation, Physiological/genetics , Aluminum/metabolism , Base Sequence , Biological Transport , Citric Acid/metabolism , Gene Expression Regulation, Plant , Genes, Plant , Hordeum/enzymology , Hordeum/metabolism , Hydrogen-Ion Concentration , Iron/metabolism , Molecular Sequence Data , Mutagenesis, Insertional , Plant Roots/metabolism , Plants, Genetically Modified , Rhizosphere , Sequence Analysis, DNA , Soil/chemistry , Xylem/metabolism
12.
PLoS Pathog ; 7(7): e1002146, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21779172

ABSTRACT

Non-retroviral RNA virus sequences (NRVSs) have been found in the chromosomes of vertebrates and fungi, but not plants. Here we report similarly endogenized NRVSs derived from plus-, negative-, and double-stranded RNA viruses in plant chromosomes. These sequences were found by searching public genomic sequence databases, and, importantly, most NRVSs were subsequently detected by direct molecular analyses of plant DNAs. The most widespread NRVSs were related to the coat protein (CP) genes of the family Partitiviridae which have bisegmented dsRNA genomes, and included plant- and fungus-infecting members. The CP of a novel fungal virus (Rosellinia necatrix partitivirus 2, RnPV2) had the greatest sequence similarity to Arabidopsis thaliana ILR2, which is thought to regulate the activities of the phytohormone auxin, indole-3-acetic acid (IAA). Furthermore, partitivirus CP-like sequences much more closely related to plant partitiviruses than to RnPV2 were identified in a wide range of plant species. In addition, the nucleocapsid protein genes of cytorhabdoviruses and varicosaviruses were found in species of over 9 plant families, including Brassicaceae and Solanaceae. A replicase-like sequence of a betaflexivirus was identified in the cucumber genome. The pattern of occurrence of NRVSs and the phylogenetic analyses of NRVSs and related viruses indicate that multiple independent integrations into many plant lineages may have occurred. For example, one of the NRVSs was retained in Ar. thaliana but not in Ar. lyrata or other related Camelina species, whereas another NRVS displayed the reverse pattern. Our study has shown that single- and double-stranded RNA viral sequences are widespread in plant genomes, and shows the potential of genome integrated NRVSs to contribute to resolve unclear phylogenetic relationships of plant species.


Subject(s)
Arabidopsis/genetics , Genome, Plant/genetics , Genome, Viral/genetics , Plant Viruses/genetics , RNA Viruses/genetics , Solanaceae/virology , Arabidopsis/virology , Plant Viruses/metabolism , RNA Viruses/metabolism , RNA, Double-Stranded/genetics , RNA, Double-Stranded/metabolism , Solanaceae/genetics , Xylariales/genetics , Xylariales/virology
14.
Plant Cell Physiol ; 52(5): 775-84, 2011 May.
Article in English | MEDLINE | ID: mdl-21482579

ABSTRACT

In many temperate plant species, prolonged cold treatment, known as vernalization, is one of the most critical steps in the transition from the vegetative to the reproductive stage. In contrast to recent advances in understanding the molecular basis of vernalization in Arabidopsis non-vernalization mutants or the spring growth habits of cereal crops such as wheat and barley, natural variations in winter growth habits and their geographic distribution are poorly understood. We analyzed varietal variation and the geographic distribution of the degree of vernalization requirements in germplasms of domesticated barley and wild barley collections. We found a biased geographic distribution of vernalization requirements in domesticated barley: Western regions were strongly associated with a higher degree of spring growth habits, and the extreme winter growth habits were localized to Far Eastern regions including China, Korea and Japan. Both wild accessions and domesticated landraces, the regions of distribution of which overlapped each other, mainly belonged to the moderate class of winter growth habit. As a result of quantitative evaluations performed in this study, we provide evidence that the variation in the degree of winter growth habit in recombinant inbred lines was controlled by quantitative trait loci including three vernalization genes (VRN1, VRN2 and VRN3) that account for 37.9% of the variation in vernalization requirements, with unknown gene(s) explaining the remaining two-thirds of the variation. This evidence implied that the Far Eastern accessions might be a genetically differentiated group derived for an evolutionary reason, resulting in their greater tendency towards a winter growth habit.


Subject(s)
Adaptation, Physiological/genetics , Cold Temperature , Genetic Variation , Hordeum/growth & development , Hordeum/genetics , Quantitative Trait, Heritable , Seasons , Analysis of Variance , Chromosome Segregation/genetics , Asia, Eastern , Flowers/genetics , Flowers/physiology , Genes, Plant/genetics , Geography , Haplotypes/genetics , Population Dynamics
15.
J Exp Bot ; 61(14): 3983-93, 2010 Sep.
Article in English | MEDLINE | ID: mdl-20616156

ABSTRACT

Polyphenol oxidases (PPOs) are copper-containing metalloenzymes encoded in the nucleus and transported into the plastids. Reportedly, PPOs cause time-dependent discoloration (browning) of end-products of wheat and barley, which impairs their appearance quality. For this study, two barley PPO homologues were amplified using PCR with a primer pair designed in the copper binding domains of the wheat PPO genes. The full-lengths of the respective PPO genes were cloned using a BAC library, inverse-PCR, and 3'-RACE. Linkage analysis showed that the polymorphisms in PPO1 and PPO2 co-segregated with the phenol reaction phenotype of awns. Subsequent RT-PCR experiments showed that PPO1 was expressed in hulls and awns, and that PPO2 was expressed in the caryopses. Allelic variation of PPO1 and PPO2 was analysed in 51 barley accessions with the negative phenol reaction of awns. In PPO1, amino acid substitutions of five types affecting functionally important motif(s) or C-terminal region(s) were identified in 40 of the 51 accessions tested. In PPO2, only one mutant allele with a precocious stop codon resulting from an 8 bp insertion in the first exon was found in three of the 51 accessions tested. These observations demonstrate that PPO1 is the major determinant controlling the phenol reaction of awns. Comparisons of PPO1 single mutants and the PPO1PPO2 double mutant indicate that PPO2 controls the phenol reaction in the crease on the ventral side of caryopses. An insertion of a hAT-family transposon in the promoter region of PPO2 may be responsible for different expression patterns of the duplicate PPO genes in barley.


Subject(s)
Catechol Oxidase/genetics , Chromosomes, Plant/genetics , Hordeum/genetics , Phenols/chemistry , Plant Proteins/genetics , Alleles , Catechol Oxidase/metabolism , Edible Grain/enzymology , Edible Grain/genetics , Gene Library , Hordeum/enzymology , Plant Proteins/metabolism , Polymerase Chain Reaction
16.
BMC Plant Biol ; 8: 72, 2008 Jun 30.
Article in English | MEDLINE | ID: mdl-18590523

ABSTRACT

BACKGROUND: The recent rapid accumulation of sequence resources of various crop species ensures an improvement in the genetics approach, including quantitative trait loci (QTL) analysis as well as the holistic population analysis and association mapping of natural variations. Because the tribe Triticeae includes important cereals such as wheat and barley, integration of information on the genetic markers in these crops should effectively accelerate map-based genetic studies on Triticeae species and lead to the discovery of key loci involved in plant productivity, which can contribute to sustainable food production. Therefore, informatics applications and a semantic knowledgebase of genome-wide markers are required for the integration of information on and further development of genetic markers in wheat and barley in order to advance conventional marker-assisted genetic analyses and population genomics of Triticeae species. DESCRIPTION: The Triticeae mapped expressed sequence tag (EST) database (TriMEDB) provides information, along with various annotations, regarding mapped cDNA markers that are related to barley and their homologues in wheat. The current version of TriMEDB provides map-location data for barley and wheat ESTs that were retrieved from 3 published barley linkage maps (the barley single nucleotide polymorphism database of the Scottish Crop Research Institute, the barley transcript map of Leibniz Institute of Plant Genetics and Crop Plant Research, and HarvEST barley ver. 1.63) and 1 diploid wheat map. These data were imported to CMap to allow the visualization of the map positions of the ESTs and interrelationships of these ESTs with public gene models and representative cDNA sequences. The retrieved cDNA sequences corresponding to each EST marker were assigned to the rice genome to predict an exon-intron structure. Furthermore, to generate a unique set of EST markers in Triticeae plants among the public domain, 3472 markers were assembled to form 2737 unique marker groups as contigs. These contigs were applied for pairwise comparison among linkage maps obtained from different EST map resources. CONCLUSION: TriMEDB provides information regarding transcribed genetic markers and functions as a semantic knowledgebase offering an informatics facility for the acceleration of QTL analysis and for population genetics studies of Triticeae.


Subject(s)
Databases, Genetic , Triticum/genetics , DNA, Complementary/genetics , Expressed Sequence Tags , Genetic Markers/genetics , Genome, Plant , Hordeum/genetics , Oryza/genetics , Quantitative Trait Loci/genetics , Software , User-Computer Interface
17.
Proc Natl Acad Sci U S A ; 105(10): 4062-7, 2008 Mar 11.
Article in English | MEDLINE | ID: mdl-18316719

ABSTRACT

In contrast to other cereals, typical barley cultivars have caryopses with adhering hulls at maturity, known as covered (hulled) barley. However, a few barley cultivars are a free-threshing variant called naked (hulless) barley. The covered/naked caryopsis is controlled by a single locus (nud) on chromosome arm 7HL. On the basis of positional cloning, we concluded that an ethylene response factor (ERF) family transcription factor gene controls the covered/naked caryopsis phenotype. This conclusion was validated by (i) fixation of the 17-kb deletion harboring the ERF gene among all 100 naked cultivars studied; (ii) two x-ray-induced nud alleles with a DNA lesion at a different site, each affecting the putative functional motif; and (iii) gene expression strictly localized to the testa. Available results indicate the monophyletic origin of naked barley. The Nud gene has homology to the Arabidopsis WIN1/SHN1 transcription factor gene, whose deduced function is control of a lipid biosynthesis pathway. Staining with a lipophilic dye (Sudan black B) detected a lipid layer on the pericarp epidermis only in covered barley. We infer that, in covered barley, the contact of the caryopsis surface, overlaid with lipids to the inner side of the hull, generates organ adhesion.


Subject(s)
Edible Grain/metabolism , Genes, Plant , Hordeum/genetics , Hordeum/metabolism , Lipids/biosynthesis , Plant Proteins/genetics , Transcription Factors/genetics , Azo Compounds , Cloning, Molecular , Gene Expression Regulation, Plant , Genetic Variation , Hordeum/cytology , Lipids/analysis , Molecular Sequence Data , Mutation , Naphthalenes , Permeability , Plant Proteins/metabolism , Sequence Analysis, DNA , Transcription Factors/metabolism
19.
Genetics ; 177(3): 1765-76, 2007 Nov.
Article in English | MEDLINE | ID: mdl-17947416

ABSTRACT

Barley (Hordeum vulgare ssp. vulgare) was first cultivated 10,500 years ago in the Fertile Crescent and is one of the founder crops of Eurasian agriculture. Phylogeographic analysis of five nuclear loci and morphological assessment of two traits in >250 domesticated barley accessions reveal that landraces found in South and East Asia are genetically distinct from those in Europe and North Africa. A Bayesian population structure assessment method indicates that barley accessions are subdivided into six clusters and that barley landraces from 10 different geographical regions of Eurasia and North Africa show distinct patterns of distribution across these clusters. Using haplotype frequency data, it appears that the Europe/North Africa landraces are most similar to the Near East population (F ST = 0.15) as well as to wild barley (F ST = 0.11) and are strongly differentiated from all other Asian populations (F ST = 0.34-0.74). A neighbor-joining analysis using these F ST estimates also supports a division between European, North African, and Near East barley types from more easterly Asian accessions. There is also differentiation in the presence of a naked caryopsis and spikelet row number between eastern and western barley accessions. The data support the differential migration of barley from two domestication events that led to the origin of barley--one in the Fertile Crescent and another farther east, possibly at the eastern edge of the Iranian Plateau--with European and North African barley largely originating from the former and much of Asian barley arising from the latter. This suggests that cultural diffusion or independent innovation is responsible for the expansion of agriculture to areas of South and East Asia during the Neolithic revolution.


Subject(s)
Hordeum/genetics , Africa, Northern , Asia , Breeding , DNA, Plant/genetics , Europe , Evolution, Molecular , Genes, Plant , Genetic Variation , Haplotypes , Molecular Sequence Data , Phylogeny , Polymorphism, Single Nucleotide , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...