Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Chem Phys ; 155(1): 014306, 2021 Jul 07.
Article in English | MEDLINE | ID: mdl-34241382

ABSTRACT

The present study aims at probing the influence of different substituents of sodium carboxylate salts R-COO-:Na+ in aqueous solutions, with R = H, CH3, C2H5, CH2Cl, CF3, and C6H5. X-ray absorption spectroscopy was used in the oxygen K-edge region to highlight the effect of R on the energy position of the O1s-to-πCOO* resonance of the carboxylate ion. Ab initio static exchange and ΔSCF calculations are performed and confirm the experimental observations. We qualitatively discuss the results on the basis of the polar properties of these groups as well as on the basis of the πCOO* orbital energy in the ground states, the oxygen 1s orbital ionization energy, and the O1s-to-πCOO* resonance energy.

2.
Sci Rep ; 10(1): 5153, 2020 Mar 20.
Article in English | MEDLINE | ID: mdl-32198381

ABSTRACT

Light-sensitive capacitance variation of Bi0.95La0.05FeO3 (BLFO) ceramics has been studied under violet to UV irradiation. The reversible capacitance enhancement up to 21% under 405 nm violet laser irradiation has been observed, suggesting a possible degree of freedom to dynamically control this in high dielectric materials for light-sensitive capacitance applications. By using ultraviolet photoemission spectroscopy (UPS), we show here that exposure of BLFO surfaces to UV light induces a counterintuitive shift of the O2p valence state to lower binding energy of up to 243 meV which is a direct signature of negative electronic compressibility (NEC). A decrease of BLFO electrical resistance agrees strongly with the UPS data suggesting the creation of a thin conductive layer on its insulating bulk under light irradiation. By exploiting the quantum capacitance model, we find that the negative quantum capacitance due to this NEC effect plays an important role in this capacitance enhancement.

3.
Phys Rev Lett ; 119(26): 263003, 2017 Dec 29.
Article in English | MEDLINE | ID: mdl-29328710

ABSTRACT

X-ray photoelectron and KLL Auger spectra were measured for the K^{+} and Cl^{-} ions in aqueous KCl solution. While the XPS spectra of these ions have similar structures, both exhibiting only weak satellites near the main line, the Auger spectra differ dramatically. Contrary to the chloride case, a very strong extra peak was found in the Auger spectrum of K^{+} at the low kinetic energy side of the ^{1}D state. Using the equivalent core model and ab initio calculations this spectral feature was assigned to electron transfer processes from solvent water molecules to the solvated cation. The observed charge transfer processes are suggested to play an important role in charge redistribution following single and multiple core-hole creation in atoms and molecules placed into environment.

4.
J Phys Condens Matter ; 28(36): 365002, 2016 09 14.
Article in English | MEDLINE | ID: mdl-27390863

ABSTRACT

UNLABELLED: The interfacial properties between electrodes and the various organic layers that comprise an organic electronic device are of direct relevance in understanding charge injection, extraction and generation. The energy levels and energy-bending of three interfaces; indium tin oxide (ITO)/poly(3,4-ethylenedioxythiophene) polystyrene sulfonate ( PEDOT: PSS), ITO/poly(N-vinylcarbazole) (PVK) and PEDOT: PSS/PVK were measured using ultraviolet photoelectron spectroscopy (UPS) and x-ray photoelectron spectroscopy (XPS). By decoupling the vacuum shift and energy-bending, the energy-bending at these interfaces can be simulated using an electrostatic model that takes into account the energetic disorder of the polymers. The model is further extended to include blended mixtures of semiconductors at differing concentrations and it was found that a very good agreement exists between the experiment and theory for all interfaces. This suggests that the electrostatic model can be used to describe energy-bending at the interface between any organic semiconductors. Further investigation into the effect of the Gaussian density of states width on energy-bending is warranted.

SELECTION OF CITATIONS
SEARCH DETAIL
...