Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 27(7)2022 Mar 24.
Article in English | MEDLINE | ID: mdl-35408481

ABSTRACT

Mung bean seed coat (MBC) is a by-product of the mung bean processing industry. It contains a large number of phenolic compounds with therapeutic anti-inflammatory, anti-diabetic and antioxidant properties. This research aimed to investigate the optimum conditions for phenolic and flavonoid extraction from MBC by pressurized liquid extraction (PLE). Response surface methodology (RSM) was used to study the effects of temperature (80-160 °C), pressure (1200-1800 psi) and ethanol concentration (5-95%) on total phenolic content (TPC), total flavonoid content (TFC) and 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) scavenging activity (ABTS). Scale-up extraction was also performed. The optimum conditions for extraction were 160 °C, 1300 psi and 50% ethanol. Under optimum conditions, the TPC was 55.27 ± 1.14 mg gallic acid equivalent (GAE)/g MBC, TFC was 34.04 ± 0.72 mg catechin equivalent (CE)/g MBC and ABTS scavenging activity was 195.05 ± 2.29 mg trolox equivalent (TE)/g MBC. The TFC and ABTS scavenging activity of the extracts obtained at the pilot scale (10 L) was not significantly different from the laboratory scale, while TPC was significantly increased. The freeze-dried MBC extract contained vitexin and isovitexin 130.53 ± 17.89, 21.21 ± 3.22 mg/g extract, respectively. In conclusion, PLE was able to extract phenolics, flavonoids with ABTS scavenging activity from MBC with the prospect for future scale-up for food industry.


Subject(s)
Fabaceae , Vigna , Antioxidants/pharmacology , Ethanol , Flavonoids , Phenols , Plant Extracts/pharmacology , Seeds
2.
J Biotechnol ; 297: 1-8, 2019 May 20.
Article in English | MEDLINE | ID: mdl-30853637

ABSTRACT

Rhodococcus opacus PD630 was used to produce biomass and lipids in molasses-based media with and without osmotic stress. In a 7-day aerobic batch culture at 30 °C, the biomass and lipid concentrations were maximized using an initial molasses concentration of 80 g/L and ammonium acetate (nitrogen source) concentration of 2.14 g/L. At a fixed initial molasses concentration of 80 g/L, the concentration of the nitrogen source was further fine-tuned to 2.25 g/L, to maximize the lipid content of the biomass to around 30% by dry mass. This medium was used to test the effects of stressing salts (sodium acetate, magnesium sulfate, sodium chloride) on production of lipids and biomass. A two-step bolus feeding with magnesium sulfate and sodium acetate, enhanced the final biomass concentration to around 19 g/L (a 50% increase relative to control), but the lipid content in the biomass was reduced to around 16% w/w. A 33% enhancement in lipid concentration relative to control, was achieved by feeding magnesium sulfate and sodium acetate. Sugarcane molasses could be effectively used to produce biomass and lipids instead of using the much more expensive pure carbon sources such as glucose and sucrose.


Subject(s)
Biomass , Culture Media/chemistry , Lipids/biosynthesis , Molasses , Osmotic Pressure , Rhodococcus/metabolism , Acetates/pharmacology , Magnesium Sulfate/pharmacology , Osmotic Pressure/drug effects , Rhodococcus/drug effects , Salts/pharmacology , Time Factors
3.
Bioprocess Biosyst Eng ; 40(1): 133-143, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27646907

ABSTRACT

Production of carotenoids by Rhodococcus opacus PD630 is reported. A modified mineral salt medium formulated with glycerol as an inexpensive carbon source was used for the fermentation. Ammonium acetate was the nitrogen source. A dry cell mass concentration of nearly 5.4 g/L could be produced in shake flasks with a carotenoid concentration of 0.54 mg/L. In batch culture in a 5 L bioreactor, without pH control, the maximum dry biomass concentration was ~30 % lower than in shake flasks and the carotenoids concentration was 0.09 mg/L. Both the biomass concentration and the carotenoids concentration could be raised using a fed-batch operation with a feed mixture of ammonium acetate and acetic acid. With this strategy, the final biomass concentration was 8.2 g/L and the carotenoids concentration was 0.20 mg/L in a 10-day fermentation. A control of pH proved to be unnecessary for maximizing the production of carotenoids in this fermentation.


Subject(s)
Biomass , Bioreactors , Carotenoids/biosynthesis , Lipids/biosynthesis , Rhodococcus/growth & development
4.
Bioresour Technol ; 156: 329-34, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24525218

ABSTRACT

Calcium oxide-loaded porous materials have shown promise as catalysts in transesterification. However, the slow diffusion of bulky triglycerides through the pores limited the activity of calcium oxide (CaO). In this work, bimodal meso-macroporous silica was used as a support to enhance the accessibility of the CaO dispersed inside the pores. Unimodal porous silica having the identical mesopore diameter was employed for the purpose of comparison. Effects of CaO content and catalyst pellet size on the yield of fatty acid methyl esters (FAME) were investigated. The basic strength was found to increase with increasing the CaO content. The CaO-loaded bimodal porous silica catalyst with the pellet size of 325µm achieved a high %FAME of 94.15 in the first cycle, and retained an excellent %FAME of 88.87 after five consecutive cycles.


Subject(s)
Biofuels , Calcium Compounds/pharmacology , Methanol/pharmacology , Oxides/pharmacology , Plant Oils/metabolism , Silicon Dioxide/pharmacology , Carbon Dioxide/metabolism , Catalysis/drug effects , Esterification/drug effects , Nitrogen/chemistry , Palm Oil , Particle Size , Porosity , Recycling , Temperature
5.
Appl Biochem Biotechnol ; 171(2): 294-314, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23832188

ABSTRACT

The aims of this study were to develop the kinetic model and determine kinetic parameters describing ethanol production from sweet sorghum juice using very high gravity technology in the batch fermentation of Saccharomyces cerevisiae NP01. The obtained experimental data were tested with four different types of model, based on the experimental data, accounting for the substrate limitation, substrate inhibition, product inhibition, and the combination of those three effects, respectively. The optimization technique to find kinetic parameters was non-linear regression using Marquardt method performed through numerical procedure. The chosen model with its kinetic parameters obtained in the batch mode was validated and tested against the other independent experimental data in the small batch-scale and large-scale fermenter, in order to investigate the applicability and scale-up effect of the model, respectively. Then, the obtained model with its parameters was applied in the simulations of the continuous and fed-batch operations to examine the concentration profiles of fermentation components with the variations in operating parameters such as the dilution rate, feed-flow rate, start-up time, and feed concentration. The results indicated that the kinetic model (the substrate limitation with substrate and product inhibition effects) was suitable to describe ethanol fermentation. In the continuous mode, using the dilution rate of 0.01 h(-1), the maximum ethanol concentration obtained was, approximately, 90 g/l whereas the simulated results from the fed-batch operation revealed that the maximum ethanol concentration at quasi-steady state condition was, approximately, 96 g/l. The start-up time of 21 h was the fastest time to reach the steady-state and quasi-steady state for both the continuous and fed-batch modes, respectively.


Subject(s)
Batch Cell Culture Techniques/methods , Biofuels/microbiology , Ethanol/metabolism , Gravitation , Models, Theoretical , Sorghum/chemistry , Fermentation , Reproducibility of Results , Saccharomyces cerevisiae/growth & development , Saccharomyces cerevisiae/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...