Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
STAR Protoc ; 5(3): 103179, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38972040

ABSTRACT

Genome editing is a powerful tool for establishing gene knockout or mutant cell lines. Here, we present a protocol for establishing knockout cell clones by deletion of large gene fragments using CRISPR-Cas9 with multiple guide RNAs. We describe steps for designing guide RNAs, cloning them into CRISPR-Cas9 vectors, cell seeding, transfection into cultured cells, clonal selection, and screening assays. This protocol can delete gene regions over 100 kbp, including GC-rich domains, and is applicable to various cell lines. For complete details on the use and execution of this protocol, please refer to Saito et al.,1 Saito and Endo et al.,2 and Higashi et al.3.

2.
Eur J Cell Biol ; 103(2): 151410, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38579602

ABSTRACT

Epithelial tissues cover the surfaces and lumens of the internal organs of multicellular animals and crucially contribute to internal environment homeostasis by delineating distinct compartments within the body. This vital role is known as epithelial barrier function. Epithelial cells are arranged like cobblestones and intricately bind together to form an epithelial sheet that upholds this barrier function. Central to the restriction of solute and fluid diffusion through intercellular spaces are occluding junctions, tight junctions in vertebrates and septate junctions in invertebrates. As part of epithelial tissues, cells undergo constant renewal, with older cells being replaced by new ones. Simultaneously, the epithelial tissue undergoes relative rearrangement, elongating, and shifting directionally as a whole. The movement or shape changes within the epithelial sheet necessitate significant deformation and reconnection of occluding junctions. Recent advancements have shed light on the intricate mechanisms through which epithelial cells sustain their barrier function in dynamic environments. This review aims to introduce these noteworthy findings and discuss some of the questions that remain unanswered.


Subject(s)
Epithelial Cells , Tight Junctions , Animals , Humans , Epithelial Cells/metabolism , Epithelial Cells/cytology , Tight Junctions/metabolism , Tight Junctions/physiology , Epithelium/metabolism , Epithelium/physiology
3.
Am J Pathol ; 194(5): 673-683, 2024 May.
Article in English | MEDLINE | ID: mdl-38311119

ABSTRACT

Podocytes serve as part of the renal filtration unit with slit diaphragms. Although the structure of slit diaphragms between two cells is well characterized, how the tricellular contact of podocytes is organized and how it changes in injured podocytes remains unknown. This study focused on a tricellular junction protein, angulin-3, and its localization in healthy podocytes, in developmental stages, and in pathologic conditions, using a newly established monoclonal antibody. Angulin-3 was confined at tricellular junctions of primordial podocytes, then transiently localized at bicellular junctions as foot process interdigitation developed and the intercellular junctions rearranged into slit diaphragm, and eventually distributed in a sparse punctate pattern on the foot processes of adult podocytes. In the rodent podocyte injury models, angulin-3 showed bicellular localization between the foot processes, and the localization turned from punctate to dashed linear pattern along the effaced foot processes with the progression of podocyte injury. Angulin-3 also accumulated between foot processes in a linear pattern in kidney biopsy samples of human nephrotic syndrome. Additionally, the line length of angulin-3 staining signal correlated with risk of relapse under glucocorticoid therapy in patients with minimal change nephrotic syndrome. This study proposes an image program to score the linearity of the accumulation pattern of angulin-3 to evaluate the relapse risk of patients with minimal change nephrotic syndrome.


Subject(s)
Nephrosis, Lipoid , Podocytes , Adult , Humans , Podocytes/metabolism , Tight Junctions/pathology , Nephrosis, Lipoid/metabolism , Nephrosis, Lipoid/pathology , Intercellular Junctions/metabolism , Recurrence
4.
Microscopy (Oxf) ; 72(3): 213-225, 2023 Jun 08.
Article in English | MEDLINE | ID: mdl-36715075

ABSTRACT

Tight junctions (TJs) are cell-cell junction structures critical for controlling paracellular permeability. On freeze-fracture replica electron microscopy, they appear as a continuous network of fibrils (TJ strands). TJ strands function as zippers that create a physical barrier against paracellular diffusion of molecules. The morphology of the TJ strand network varies greatly between tissues, and in recent years, studies have highlighted the mechanisms regulating the morphology of TJ strand networks and on their relevance to barrier function. In this review, we discuss evidence regarding the components of the TJ strand and the mechanisms for creating the TJ strand network. Furthermore, we discuss and hypothesize how its morphology contributes to the establishment of the epithelial barrier.


Subject(s)
Epithelium , Tight Junctions , Tight Junctions/chemistry , Tight Junctions/physiology
5.
J Cell Biol ; 222(1)2023 01 02.
Article in English | MEDLINE | ID: mdl-36378161

ABSTRACT

TJs maintain the epithelial barrier by regulating paracellular permeability. Since TJs are under dynamically fluctuating intercellular tension, cells must continuously survey and repair any damage. However, the underlying mechanisms allowing cells to sense TJ damage and repair the barrier are not yet fully understood. Here, we showed that proteinases play an important role in the maintenance of the epithelial barrier. At TJ break sites, EpCAM-claudin-7 complexes on the basolateral membrane become accessible to apical membrane-anchored serine proteinases (MASPs) and the MASPs cleave EpCAM. Biochemical data and imaging analysis suggest that claudin-7 released from EpCAM contributes to the rapid repair of damaged TJs. Knockout (KO) of MASPs drastically reduced barrier function and live-imaging of TJ permeability showed that MASPs-KO cells exhibited increased size, duration, and frequency of leaks. Together, our results reveal a novel mechanism of TJ maintenance through the localized proteolysis of EpCAM at TJ leaks, and provide a better understanding of the dynamic regulation of epithelial permeability.


Subject(s)
Claudins , Epithelial Cell Adhesion Molecule , Mannose-Binding Protein-Associated Serine Proteases , Tight Junctions , Claudins/genetics , Claudins/metabolism , Epithelial Cell Adhesion Molecule/genetics , Epithelial Cell Adhesion Molecule/metabolism , Mannose-Binding Protein-Associated Serine Proteases/metabolism , Proteolysis , Tight Junctions/metabolism , Gene Knockout Techniques
6.
Ann N Y Acad Sci ; 1517(1): 234-250, 2022 11.
Article in English | MEDLINE | ID: mdl-36069127

ABSTRACT

Occludin, tricellulin, and marvelD3 belong to the tight junction (TJ)-associated MARVEL protein family. Occludin and tricellulin jointly contribute to TJ strand branching point formation and epithelial barrier maintenance. However, whether marvelD3 has the same function remains unclear. Furthermore, the roles of the carboxy-terminal cytoplasmic tail, which is conserved in occludin and tricellulin, on the regulation of TJ strand morphology have not yet been explored in epithelial cells. We established tricellulin/occludin/marveld3 triple-gene knockout (tKO) MDCK II cells and evaluated the roles of marvelD3 in the TJ strand structure and barrier function using MDCK II cells and a mathematical model. The complexity of TJ strand networks and paracellular barrier did not change in tKO cells compared to that in tricellulin/occludin double-gene knockout (dKO) cells. Exogenous marvelD3 expression in dKO cells did not increase the complexity of TJ strand networks and epithelial barrier tightness. The expression of the carboxy-terminal truncation mutant of tricellulin restored the barrier function in the dKO cells, whereas occludin lacking the carboxy-terminal cytoplasmic tail was not expressed on the plasma membrane. These data suggest that marvelD3 does not affect the morphology of TJ strands and barrier function in MDCK II cells and that the carboxy-terminal cytoplasmic tail of tricellulin is dispensable for barrier improvement.


Subject(s)
MARVEL Domain Containing 2 Protein , Tight Junctions , Humans , Dogs , Animals , Tight Junctions/metabolism , Occludin/genetics , Occludin/metabolism , MARVEL Domain Containing 2 Protein/metabolism , Epithelial Cells/metabolism , Tight Junction Proteins/metabolism , Madin Darby Canine Kidney Cells
7.
Mol Biol Cell ; 32(8): 722-738, 2021 04 15.
Article in English | MEDLINE | ID: mdl-33566640

ABSTRACT

Tight junctions (TJs) are composed of a claudin-based anastomosing network of TJ strands at which plasma membranes of adjacent epithelial cells are closely attached to regulate the paracellular permeability. Although the TJ proteins occludin and tricellulin have been known to be incorporated in the TJ strand network, their molecular functions remain unknown. Here, we established tricellulin/occludin-double knockout (dKO) MDCK II cells using a genome editing technique and evaluated the structure and barrier function of these cells. In freeze-fracture replica electron microscopy, the TJ strands of tricellulin/occludin-dKO cells had fewer branches and were less anastomosed compared with the controls. The paracellular permeability of ions and small tracers was increased in the dKO cells. A single KO of tricellulin or occludin had limited effects on the morphology and permeability of TJs. Mathematical simulation using a simplified TJ strand network model predicted that reduced cross-links in TJ strands lead to increased permeability of ions and small macromolecules. Furthermore, overexpression of occludin increased the complexity of TJ strand network and strengthened barrier function. Taken together, our data suggest that tricellulin and occludin mediate the formation and/or stabilization of TJ-strand branching points and contribute to the maintenance of epithelial barrier integrity.


Subject(s)
MARVEL Domain Containing 2 Protein/metabolism , Occludin/metabolism , Tight Junctions/metabolism , Animals , Cell Line , Claudins/metabolism , Dogs , Epithelial Cells/metabolism , HEK293 Cells , Humans , MARVEL Domain Containing 2 Protein/physiology , Madin Darby Canine Kidney Cells , Occludin/physiology , Tight Junctions/physiology
8.
Oncotarget ; 9(24): 16588-16598, 2018 Mar 30.
Article in English | MEDLINE | ID: mdl-29682171

ABSTRACT

Since hepatitis C virus (HCV) is thought to enter into host hepatocytes using the same cellular pathways regardless of the genotypes, the host factors are promising targets to prevent and treat HCV infection. Human occludin (hOCLN) is one representative entry factor, and its second extracellular loop (EC2) contributes to the species selectivity of HCV-susceptibility. However, the exact function of hOCLN during HCV entry remains unknown, and no hOCLN-targeting antibodies or synthetic drugs that prevent and treat HCV infection have yet been developed. Here we generated the anti-hOCLN-EC2 monoclonal antibody (mAb) 67-2, and demonstrated that it efficiently inhibited HCV infection in the HCV-permissive human cell line Huh7.5.1. We also showed, using three different culture systems of Huh7.5.1 cells, that this novel mAb is accessible to OCLN from the basolateral side of hepatocytes but not from the apical side. In addition, our Western blot analyses indicated that the established 67-2 mAb reacted not only with hOCLN but also with mouse OCLN, strongly suggesting that 67-2 does not recognize the human-specific amino acids in OCLN-EC2. Moreover, we revealed that the anti-hOCLN-EC2 mAb 67-2 showed no adverse effects on cell viability or the barrier function of tight junctions.

9.
PLoS One ; 9(9): e106853, 2014.
Article in English | MEDLINE | ID: mdl-25229561

ABSTRACT

Here, we report a method for introducing large objects of up to a micrometer in diameter into cultured mammalian cells by electrofusion of giant unilamellar vesicles. We prepared GUVs containing various artificial objects using a water-in-oil (w/o) emulsion centrifugation method. GUVs and dispersed HeLa cells were exposed to an alternating current (AC) field to induce a linear cell-GUV alignment, and then a direct current (DC) pulse was applied to facilitate transient electrofusion. With uniformly sized fluorescent beads as size indexes, we successfully and efficiently introduced beads of 1 µm in diameter into living cells along with a plasmid mammalian expression vector. Our electrofusion did not affect cell viability. After the electrofusion, cells proliferated normally until confluence was reached, and the introduced fluorescent beads were inherited during cell division. Analysis by both confocal microscopy and flow cytometry supported these findings. As an alternative approach, we also introduced a designed nanostructure (DNA origami) into live cells. The results we report here represent a milestone for designing artificial symbiosis of functionally active objects (such as micro-machines) in living cells. Moreover, our technique can be used for drug delivery, tissue engineering, and cell manipulation.


Subject(s)
Unilamellar Liposomes/chemistry , Flow Cytometry , HeLa Cells , Humans , Nanostructures/chemistry
10.
Exp Cell Res ; 327(1): 1-11, 2014 Sep 10.
Article in English | MEDLINE | ID: mdl-24825188

ABSTRACT

Contact guidance is a cellular phenomenon observed during wound healing and developmental patterning, in which adherent cells align in the same direction due to physical cues. Despite numerous studies, the molecular mechanism underlying the consistent cell orientation is poorly understood. Here we fabricated microgrooves with a pitch of submicrons to study contact guidance of smooth muscle cells. We show that both integrin-based cell-substrate adhesions and cellular tension are necessary to achieve contact guidance along microgrooves. We further show through analyses on paxillin that cell-substrate adhesions are more prone to become mature when they run along microgrooves than align at an angle to the direction of microgrooves. Because cellular tension promotes the maturation of cell-substrate adhesions, we propose that the adhesions aligning across microgrooves are not physically efficient for bearing cellular tension compared to those aligning along microgrooves. Thus, the proposed model describes a mechanism of contact guidance that cells would finally align preferentially along microgrooves because cellular tensions are more easily borne within the direction, and the direction of resulting mature adhesions determines the direction of the whole cells.


Subject(s)
Cell Adhesion/physiology , Myocytes, Smooth Muscle/physiology , Animals , Cattle , Cells, Cultured , Integrins/metabolism , Myocytes, Smooth Muscle/metabolism , Paxillin/metabolism , Rats , Surface Properties
11.
Biotechnol Lett ; 36(2): 391-6, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24101251

ABSTRACT

Sheets of cells can be used for tissue regenerative medicine. Cell alignment within the sheet is now a key factor in the next generation of this technology. Anisotropic cell sheets without random cell orientations have been conventionally produced with photolithographically, microfabricated substrates using special facilities and equipment. Here we demonstrate a more accessible approach to the fabrication of anisotropic substrates. We locally deformed part of an elastic membrane and simultaneously oxidized the surface to create microwrinkles as well as to enable adhesion to the extracellular matrix. The approach with the local loading made it possible to orient cells in controlled directions within a single membrane sheet depending on the strains determined by the controllable deformation. This technique potentially enables a versatile design of microwrinkles for target-compatible cell alignments.


Subject(s)
Membranes , Regenerative Medicine/methods , Tissue Engineering/methods , Tissue Scaffolds , Animals , Cells, Cultured , Extracellular Matrix/metabolism , Rats
12.
Biotechnol Lett ; 36(3): 507-13, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24162137

ABSTRACT

The micropatterning of cells, which restricts the adhesive regions on the substrate and thus controls cell geometry, is used to study mechanobiology-related cell functions. Plasma lithography is a means of providing such patterns and uses a spatially-selective plasma treatment. Conventional plasma lithography employs a positionally-fixed mask with which the geometry of the patterns is determined and thus is not suited for producing on-demand geometries of patterns. To overcome this, we have manufactured a new device with a motorized mask mounted in a vacuum chamber of a plasma generator, which we designate motorized plasma lithography. Our pilot tests indicate that various pattern geometries can be obtained with the control of a shielding mask during plasma treatment. Our approach can thus omit the laborious process of preparing photolithographically microfabricated masks required for the conventional plasma lithography.


Subject(s)
Biophysics/methods , Cell Culture Techniques/methods , Cytological Techniques/methods , Plasma/metabolism , Animals , Cell Adhesion , Cells, Cultured , Rats , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...