Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
Add more filters











Publication year range
1.
FASEB Bioadv ; 5(11): 453-469, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37936920

ABSTRACT

Store-operated Ca2+ entry (SOCE) is indispensable for intracellular Ca2+ homeostasis in skeletal muscle, and constitutive activation of SOCE causes tubular aggregate myopathy (TAM). To understand the pathogenesis of TAM, we induced pluripotent stem cells (iPSCs) from a TAM patient with a rare mutation (c.1450_1451insGA; p. Ile484ArgfsX21) in the STIM1 gene. This frameshift mutation produces a truncated STIM1 with a disrupted C-terminal inhibitory domain (CTID) and was reported to diminish SOCE. Myotubes induced from the patient's-iPSCs (TAM myotubes) showed severely impaired SOCE, but antioxidants greatly restored SOCE partly via upregulation of an endoplasmic reticulum (ER) chaperone, BiP (GRP78), in the TAM myotubes. Our observation suggests that antioxidants are promising tools for treatment of TAM caused by reduced SOCE.

2.
J Spine Surg ; 9(1): 98-101, 2023 Mar 30.
Article in English | MEDLINE | ID: mdl-37038418

ABSTRACT

Hemostatic procedures in endoscopic spine surgery have not yet been established, especially in full-endoscopic spine surgery (FESS) performed under continuous irrigation, which has been a major concern for surgeons. Chu et al. had previously reported a technique to convey bone wax during full-endoscopic cervical spine surgery via intracorporeal route by using ball tip of the drill in 2018. However, to the best of our knowledge, there has been no report by surgeons to adopt bone wax as a hemostatic material in full-endoscopic lumbar surgery to date, probably because of difficulty in handling bone wax under continuous irrigation and through a narrow and long working channel in endoscope. We have renewed the bone wax technique (BWT) for hemostasis in FESS, improving its handling by introducing a nozzle applicator, without which the bone wax would stick to the working channel of the endoscope on the way to the bleeding target. This would result in significant loss of bone wax and repeated bone-wax contact would cause dirt build-up on the endoscope lens, which would then be pushed out from the wall of the working channel, thereby disturbing the laminectomy procedure and obfuscating the visual field. Technical details using nozzle-loaded bone wax have been demonstrated.

3.
Elife ; 122023 02 01.
Article in English | MEDLINE | ID: mdl-36723429

ABSTRACT

Dystroglycan (DG) requires extensive post-translational processing and O-glycosylation to function as a receptor for extracellular matrix (ECM) proteins containing laminin-G (LG) domains. Matriglycan is an elongated polysaccharide of alternating xylose (Xyl) and glucuronic acid (GlcA) that binds with high affinity to ECM proteins with LG domains and is uniquely synthesized on α-dystroglycan (α-DG) by like-acetylglucosaminyltransferase-1 (LARGE1). Defects in the post-translational processing or O-glycosylation of α-DG that result in a shorter form of matriglycan reduce the size of α-DG and decrease laminin binding, leading to various forms of muscular dystrophy. Previously, we demonstrated that protein O-mannose kinase (POMK) is required for LARGE1 to generate full-length matriglycan on α-DG (~150-250 kDa) (Walimbe et al., 2020). Here, we show that LARGE1 can only synthesize a short, non-elongated form of matriglycan in mouse skeletal muscle that lacks the DG N-terminus (α-DGN), resulting in an ~100-125 kDa α-DG. This smaller form of α-DG binds laminin and maintains specific force but does not prevent muscle pathophysiology, including reduced force production after eccentric contractions (ECs) or abnormalities in the neuromuscular junctions. Collectively, our study demonstrates that α-DGN, like POMK, is required for LARGE1 to extend matriglycan to its full mature length on α-DG and thus prevent muscle pathophysiology.


Subject(s)
Dystroglycans , Muscular Dystrophies , N-Acetylglucosaminyltransferases , Animals , Mice , Dystroglycans/metabolism , Extracellular Matrix Proteins/metabolism , Glycosylation , Laminin/metabolism , Muscular Dystrophies/genetics , Muscular Dystrophies/metabolism , Protein Kinases/metabolism , Protein Processing, Post-Translational , N-Acetylglucosaminyltransferases/metabolism
4.
Proc Natl Acad Sci U S A ; 119(10): e2115955119, 2022 03 08.
Article in English | MEDLINE | ID: mdl-35238661

ABSTRACT

SignificanceStep-bunching instability (SBI) is one of the interfacial instabilities driven by self-organization of elementary step flow associated with crystal-growth dynamics, which has been observed in diverse crystalline materials. However, despite theoretical suggestions of its presence, no direct observations of SBI for simple melt growth have been achieved so far. Here, with the aid of a type of optical microscope and its combination with a two-beam interferometer, we realized quantitative in situ observations of the spatiotemporal dynamics of the SBI. This enables us to examine the origin of the SBI at the level of the step-step interaction. We also found that the SBI spontaneously induces a highly stable spiral growth mode, governing the late stage of the growth process.

5.
Mol Ther Methods Clin Dev ; 18: 131-144, 2020 Sep 11.
Article in English | MEDLINE | ID: mdl-32637445

ABSTRACT

Myotonic dystrophy type 1 is the most common type of adult-onset muscular dystrophy. This is an autosomal dominant disorder and caused by the expansion of the CTG repeat in the 3' untranslated region of the dystrophia myotonica protein kinase (DMPK) gene. Messenger RNAs containing these expanded repeats form aggregates as nuclear RNA foci. Then, RNA binding proteins, including muscleblind-like 1, are sequestered to the RNA foci, leading to systemic abnormal RNA splicing. In this study, we used CRISPR-Cas9 genome editing to excise this CTG repeat. Dual cleavage at the 5' and 3' regions of the repeat using a conventional Cas9 nuclease and a double nicking with Cas9 nickase successfully excised the CTG repeat. Subsequently, the formation of the RNA foci was markedly reduced in patient-derived fibroblasts. However, contrary to expectations, a considerable amount of off-target digestions and on-target genomic rearrangements were observed using high-throughput genome-wide translocation sequencing. Finally, the suppression of DMPK transcripts using CRISPR interference significantly decreased the intensity of RNA foci. Our results indicate that close attention should be paid to the unintended mutations when double-strand breaks are generated by CRISPR-Cas9 for therapeutic purposes. Alternative approaches independent of double-strand breaks, including CRISPR interference, may be considered.

6.
Proc Natl Acad Sci U S A ; 116(23): 11396-11401, 2019 06 04.
Article in English | MEDLINE | ID: mdl-31097590

ABSTRACT

α-Dystroglycan (α-DG) is a highly glycosylated basement membrane receptor that is cleaved by the proprotein convertase furin, which releases its N-terminal domain (α-DGN). Before cleavage, α-DGN interacts with the glycosyltransferase LARGE1 and initiates functional O-glycosylation of the mucin-like domain of α-DG. Notably, α-DGN has been detected in a wide variety of human bodily fluids, but the physiological significance of secreted α-DGN remains unknown. Here, we show that mice lacking α-DGN exhibit significantly higher viral titers in the lungs after Influenza A virus (IAV) infection (strain A/Puerto Rico/8/1934 H1N1), suggesting an inability to control virus load. Consistent with this, overexpression of α-DGN before infection or intranasal treatment with recombinant α-DGN prior and during infection, significantly reduced IAV titers in the lungs of wild-type mice. Hemagglutination inhibition assays using recombinant α-DGN showed in vitro neutralization of IAV. Collectively, our results support a protective role for α-DGN in IAV proliferation.


Subject(s)
Cell Proliferation/drug effects , Dystroglycans/pharmacology , Influenza A Virus, H1N1 Subtype/drug effects , Protective Agents/pharmacology , Animals , Basement Membrane/drug effects , Basement Membrane/virology , Body Fluids/drug effects , Body Fluids/virology , Cell Line , Glycosylation/drug effects , HEK293 Cells , Humans , Inflammation/drug therapy , Inflammation/virology , Influenza, Human/drug therapy , Influenza, Human/virology , Lung/drug effects , Lung/virology , Mice , Mice, Inbred C57BL , Orthomyxoviridae Infections/drug therapy , Orthomyxoviridae Infections/virology , Viral Load/methods
7.
J Phys Ther Sci ; 30(1): 42-46, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29410563

ABSTRACT

[Purpose] Changes in oxidative stress severity and antioxidant potential are routinely used as oxidative stress markers. While several studies have reported the relationship between these markers and exercise, little is known about the dynamic nature of these markers during muscle atrophy and reloading. Therefore, we examined changes in oxidative stress severity and antioxidant potential during muscle atrophy and reloading. [Subjects and Methods] Muscle atrophy was induced in mice by casting the limb for 2 weeks. Mice were then subjected to reloading for 2 weeks. The severity of oxidative stress (hydroperoxide) and antioxidant potential (degree of reduction) were quantified. [Results] Muscle atrophy was induced by cast immobilization. The muscle mass of mice recovered to similar levels as the control group following 2 weeks of reloading. The degree of oxidative stress was within the normal range throughout the experimental period. The antioxidant potential decreased to the clinical borderline level 2 weeks after immobilization, further decreased after 1 day of reloading, and then recovered to within the normal range. [Conclusion] Performing d-ROMs and BAP tests may contribute to the understanding to atrophic process of skeletal muscle in clinical practice of physical therapy.

8.
J Phys Ther Sci ; 29(10): 1779-1783, 2017 Oct.
Article in English | MEDLINE | ID: mdl-29184288

ABSTRACT

[Purpose] To study muscle atrophy, the muscle atrophy model mice have been used frequently. In particular, cast immobilization is the most common method to induce muscle atrophy. However, it is time consuming and often causes adverse events including skin injury, edema, and necrosis. The present study, we developed a hook-and-loop fastener (Velcro) immobilization method as a new, simple, and less invasive approach to induce muscle atrophy. [Subjects and Methods] Mice were bandaged in the knee joint extension and ankle plantar extension position. Muscle atrophy was induced by either winding a cast or Velcro around the limb. [Results] According to weight and fiber size, Velcro immobilization induced equivalent muscle atrophy to cast immobilization. Velcro immobilization reduced significantly the time for the procedure and the frequency of adverse events. [Conclusion] Velcro immobilization can induce muscle atrophy comparable to cast immobilization, but in a shorter time and with less complications. Velcro immobilization may contribute to the study of disuse muscle atrophy in clinical practice of physical therapy using a mouse model.

9.
Proc Natl Acad Sci U S A ; 113(39): 10992-7, 2016 09 27.
Article in English | MEDLINE | ID: mdl-27625424

ABSTRACT

Dystroglycan (DG) is a highly expressed extracellular matrix receptor that is linked to the cytoskeleton in skeletal muscle. DG is critical for the function of skeletal muscle, and muscle with primary defects in the expression and/or function of DG throughout development has many pathological features and a severe muscular dystrophy phenotype. In addition, reduction in DG at the sarcolemma is a common feature in muscle biopsies from patients with various types of muscular dystrophy. However, the consequence of disrupting DG in mature muscle is not known. Here, we investigated muscles of transgenic mice several months after genetic knockdown of DG at maturity. In our study, an increase in susceptibility to contraction-induced injury was the first pathological feature observed after the levels of DG at the sarcolemma were reduced. The contraction-induced injury was not accompanied by increased necrosis, excitation-contraction uncoupling, or fragility of the sarcolemma. Rather, disruption of the sarcomeric cytoskeleton was evident as reduced passive tension and decreased titin immunostaining. These results reveal a role for DG in maintaining the stability of the sarcomeric cytoskeleton during contraction and provide mechanistic insight into the cause of the reduction in strength that occurs in muscular dystrophy after lengthening contractions.


Subject(s)
Cytoskeleton/metabolism , Dystroglycans/metabolism , Muscle Contraction , Muscle, Skeletal/pathology , Muscle, Skeletal/physiopathology , Sarcomeres/metabolism , Animals , Connectin/metabolism , Cytoskeleton/drug effects , Excitation Contraction Coupling/drug effects , Female , Isometric Contraction/drug effects , Male , Mice, Knockout , Muscle Contraction/drug effects , Muscle, Skeletal/drug effects , Necrosis , Organ Size , RNA, Messenger/genetics , RNA, Messenger/metabolism , Sarcolemma/metabolism , Sarcomeres/drug effects , Tamoxifen/pharmacology
10.
Neurol Genet ; 2(1): e50, 2016 Feb.
Article in English | MEDLINE | ID: mdl-27066587

ABSTRACT

OBJECTIVE: To identify the gene mutation of tubular aggregate myopathy (TAM) and gain mechanistic insight into the pathogenesis of the disorder. METHODS: We described a family affected by autosomal dominant TAM and performed exome and Sanger sequencing to identify mutations. We further analyzed the functional significance of the identified mutation by expression studies and intracellular Ca(2+) measurements. RESULTS: A 42-year-old man presented with slowly progressive muscle weakness and atrophy in all 4 limbs and the trunk. Muscle biopsy and microscopic examination revealed tubular aggregates in his skeletal muscle. Genetic analysis of this family identified a novel heterozygous mutation, c.1450_1451insGA (p.Ile484ArgfsX21), in stromal interaction molecule 1 (STIM1), a Ca(2+) sensor in sarcoplasmic reticulum. We transfected cultured cells with STIM1 and demonstrated that the mutant STIM1 exhibited aggregation-like appearance in shrunk cytoplasm. Furthermore, we revealed that the intracellular Ca(2+) influx is decreased by the mutant STIM1. CONCLUSIONS: The novel mutation p.Ile484ArgfsX21 is located in the cytoplasmic C-terminal inhibitory domain (CTID) of STIM1. However, all mutations reported so far in TAM reside in the luminal N-terminal EF hand region. The aggregation-like appearance of STIM1 and the decreased intracellular Ca(2+) influx in cells transfected with CTID mutant are in sharp contrast to these previous reports. Taken together, these findings indicate that mutations of STIM1 cause TAM through the dysregulation of Ca(2+) homeostasis.

12.
Hum Mol Genet ; 23(17): 4543-58, 2014 Sep 01.
Article in English | MEDLINE | ID: mdl-24722207

ABSTRACT

Several types of muscular dystrophy are caused by defective linkage between α-dystroglycan (α-DG) and laminin. Among these, dystroglycanopathy, including Fukuyama-type congenital muscular dystrophy (FCMD), results from abnormal glycosylation of α-DG. Recent studies have shown that like-acetylglucosaminyltransferase (LARGE) strongly enhances the laminin-binding activity of α-DG. Therefore, restoration of the α-DG-laminin linkage by LARGE is considered one of the most promising possible therapies for muscular dystrophy. In this study, we generated transgenic mice that overexpress LARGE (LARGE Tg) and crossed them with dy(2J) mice and fukutin conditional knockout mice, a model for laminin α2-deficient congenital muscular dystrophy (MDC1A) and FCMD, respectively. Remarkably, in both the strains, the transgenic overexpression of LARGE resulted in an aggravation of muscular dystrophy. Using morphometric analyses, we found that the deterioration of muscle pathology was caused by suppression of muscle regeneration. Overexpression of LARGE in C2C12 cells further demonstrated defects in myotube formation. Interestingly, a decreased expression of insulin-like growth factor 1 (IGF-1) was identified in both LARGE Tg mice and LARGE-overexpressing C2C12 myotubes. Supplementing the C2C12 cells with IGF-1 restored the defective myotube formation. Taken together, our findings indicate that the overexpression of LARGE aggravates muscular dystrophy by suppressing the muscle regeneration and this adverse effect is mediated via reduced expression of IGF-1.


Subject(s)
Down-Regulation , Insulin-Like Growth Factor I/metabolism , Muscle, Skeletal/physiopathology , Muscular Dystrophy, Animal/metabolism , Muscular Dystrophy, Animal/physiopathology , N-Acetylglucosaminyltransferases/metabolism , Regeneration , Animals , Cell Fusion , Cell Line , Dystroglycans/metabolism , Glycosylation , Humans , Mice , Mice, Transgenic , Muscle Fibers, Skeletal/metabolism , Muscle Fibers, Skeletal/pathology , Myoblasts/metabolism , Myoblasts/pathology , Phenotype , Proteins/metabolism , Transfection , Transferases
13.
Nature ; 503(7474): 136-40, 2013 Nov 07.
Article in English | MEDLINE | ID: mdl-24132234

ABSTRACT

The dense glycan coat that surrounds every cell is essential for cellular development and physiological function, and it is becoming appreciated that its composition is highly dynamic. Post-translational addition of the polysaccharide repeating unit [-3-xylose-α1,3-glucuronic acid-ß1-]n by like-acetylglucosaminyltransferase (LARGE) is required for the glycoprotein dystroglycan to function as a receptor for proteins in the extracellular matrix. Reductions in the amount of [-3-xylose-α1,3-glucuronic acid-ß1-]n (hereafter referred to as LARGE-glycan) on dystroglycan result in heterogeneous forms of muscular dystrophy. However, neither patient nor mouse studies has revealed a clear correlation between glycosylation status and phenotype. This disparity can be attributed to our lack of knowledge of the cellular function of the LARGE-glycan repeat. Here we show that coordinated upregulation of Large and dystroglycan in differentiating mouse muscle facilitates rapid extension of LARGE-glycan repeat chains. Using synthesized LARGE-glycan repeats we show a direct correlation between LARGE-glycan extension and its binding capacity for extracellular matrix ligands. Blocking Large upregulation during muscle regeneration results in the synthesis of dystroglycan with minimal LARGE-glycan repeats in association with a less compact basement membrane, immature neuromuscular junctions and dysfunctional muscle predisposed to dystrophy. This was consistent with the finding that patients with increased clinical severity of disease have fewer LARGE-glycan repeats. Our results reveal that the LARGE-glycan of dystroglycan serves as a tunable extracellular matrix protein scaffold, the extension of which is required for normal skeletal muscle function.


Subject(s)
Dystroglycans/chemistry , Dystroglycans/metabolism , Extracellular Matrix/metabolism , Muscular Dystrophies/prevention & control , N-Acetylglucosaminyltransferases/metabolism , Polysaccharides/metabolism , Animals , Basement Membrane/metabolism , Basement Membrane/pathology , Cell Differentiation , Cell Line , Extracellular Matrix/chemistry , Female , Humans , Ligands , Male , Mice , Mice, Inbred C57BL , Molecular Weight , Muscle Development , Muscles/metabolism , Muscles/pathology , Muscular Dystrophies/metabolism , Muscular Dystrophies/pathology , Myoblasts , N-Acetylglucosaminyltransferases/deficiency , N-Acetylglucosaminyltransferases/genetics , Neuromuscular Junction/metabolism , Neuromuscular Junction/pathology , Phenotype , Polysaccharides/chemistry
14.
Laryngoscope ; 122(3): 572-7, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22241660

ABSTRACT

OBJECTIVES/HYPOTHESIS: A new concept of IgG4-related sclerosing sialadenitis characterized by high serum IgG4 levels and tissue infiltration of IgG4-expressing plasmacytes has recently been proposed. To determine appropriate serum levels of IgG4 for monitoring disease activity, a total of 36 serum samples and eight tissue samples from patients with IgG4-related sclerosing sialadenitis were studied. STUDY DESIGN: A retrospective clinical study at Yamagata University School of Medicine. METHODS: The patient group consisted of six males and four females with an average age of 60 years (range, 47-74 years). Serum levels of IgG4 and the density of IgG4-positive plasmacytes in affected tissues were studied. RESULTS: All patients had elevated serum IgG4 levels (>135 mg/dL), and IgG4-positive plasmacytes (IgG4+ plasma cells/IgG+ plasma cells >50%) were observed in the involved salivary glands. Six patients with IgG4-related sclerosing sialadenitis with high IgG4/IgG ratios and prominent infiltration of IgG4-positive plasmacytes in the involved salivary glands had systemic complications, including pancreatitis, retroperitoneal fibrosis, and/or inflammatory pseudotumor of the lung after swelling of the salivary glands. All six of these patients were successfully treated with systemic corticosteroids. CONCLUSIONS: In the six patients with systemic complications, treatment with systemic corticosteroids reduced the salivary gland enlargement and lowered serum IgG4 concentrations. These results suggest that IgG4 plays an important role in the pathogenesis of IgG4-related sclerosing sialadenitis, and that IgG4 levels and IgG4/IgG ratios may be used as additional indicators of disease activity and as biomarkers for potential life-threatening complications.


Subject(s)
Antibodies, Anti-Idiotypic/immunology , Immunoglobulin G/immunology , Plasma Cells/pathology , Sclerosis/immunology , Sialadenitis/immunology , Aged , Female , Follow-Up Studies , Glucocorticoids/therapeutic use , Humans , Immunoglobulin G/metabolism , Immunohistochemistry , Male , Middle Aged , Plasma Cells/immunology , Prognosis , Sclerosis/drug therapy , Sclerosis/pathology , Sialadenitis/drug therapy , Sialadenitis/pathology
15.
Biochem Biophys Res Commun ; 414(4): 826-31, 2011 Nov 04.
Article in English | MEDLINE | ID: mdl-22019851

ABSTRACT

Histone deacetylase inhibitors (HDACIs) are known to promote skeletal muscle formation. However, their mechanisms that include effects on the expression of major muscle components such as the dystrophin-associated proteins complex (DAPC) or myogenic regulatory factors (MRFs) remain unknown. In this study, we investigated the effects of HDACIs on skeletal muscle formation using the C2C12 cell culture system. C2C12 myoblasts were exposed to trichostatin A (TSA), one of the most potent HDACIs, and differentiation was subsequently induced. We found that TSA enhances the expression of myosin heavy chain without affecting DAPC expression. In addition, TSA increases the expression of the early MRFs, Myf5 and MEF2, whereas it suppresses the expression of the late MRF, myogenin. Interestingly, TSA also enhances the expression of Id1, Id2, and Id3 (Ids). Ids are myogenic repressors that inhibit myogenic differentiation. These findings suggest that TSA promotes gene expression in proliferation and suppresses it in the differentiation stage of muscle formation. Taken together, our data demonstrate that TSA enhances myogenesis by coordinating the expression of MRFs and myogenic repressors.


Subject(s)
Histone Deacetylase Inhibitors/pharmacology , Hydroxamic Acids/pharmacology , Muscle Development/drug effects , Muscle, Skeletal/drug effects , Myogenic Regulatory Factors/metabolism , Animals , Cell Line , Dystrophin-Associated Protein Complex/metabolism , Gene Expression/drug effects , Inhibitor of Differentiation Protein 1/metabolism , Inhibitor of Differentiation Protein 2/metabolism , Inhibitor of Differentiation Proteins/metabolism , Mice , Muscle Development/genetics , Muscle, Skeletal/growth & development , Muscle, Skeletal/metabolism , Myogenic Regulatory Factor 5/metabolism , Myosin Heavy Chains/metabolism
16.
Biochem Biophys Res Commun ; 411(2): 365-9, 2011 Jul 29.
Article in English | MEDLINE | ID: mdl-21741360

ABSTRACT

α-Dystroglycan (α-DG) plays crucial roles in maintaining the stability of cells. We demonstrated previously that the N-terminal domain of α-DG (α-DG-N) is secreted by cultured cells into the culture medium. In the present study, to clarify its function in vivo, we generated a monoclonal antibody against α-DG-N and investigated the secretion of α-DG-N in human cerebrospinal fluid (CSF). Interestingly, we found that a considerable amount of α-DG-N was present in CSF. α-DG-N in CSF was a sialylated glycoprotein with both N- and O-linked glycan. These observations suggest that secreted α-DG-N may be transported via CSF and have yet unidentified effects on the nervous system.


Subject(s)
Dystroglycans/cerebrospinal fluid , Dystroglycans/metabolism , Glycoproteins/cerebrospinal fluid , Glycoproteins/metabolism , Neurons/metabolism , Cells, Cultured , Dystroglycans/chemistry , Glycoproteins/chemistry , Glycosylation , Humans , N-Acetylneuraminic Acid/chemistry , Protein Structure, Tertiary
17.
Kidney Int ; 79(3): 311-6, 2011 Feb.
Article in English | MEDLINE | ID: mdl-20944549

ABSTRACT

In addition to skeletal muscle and the nervous system, α-dystroglycan is found in the podocyte basal membrane, stabilizing these cells on the glomerular basement membrane. Fukutin, named after the gene responsible for Fukuyama-type congenital muscular dystrophy, is a putative glycosyltransferase required for the post-translational modification of α-dystroglycan. Chimeric mice targeted for both alleles of fukutin develop severe muscular dystrophy; however, these mice do not have proteinuria. Despite the lack of a functional renal defect, we evaluated glomerular structure and found minor abnormalities in the chimeric mice by light microscopy. Electron microscopy revealed flattening of podocyte foot processes, the number of which was significantly lower in the chimeric compared to wild-type mice. A monoclonal antibody against the laminin-binding carbohydrate residues of α-dystroglycan did not detect α-dystroglycan glycosylation in the glomeruli by immunoblotting or immunohistochemistry. In contrast, expression of the core α-dystroglycan protein was preserved. There was no statistical difference in dystroglycan mRNA expression or in the amount of nephrin and α3-integrin protein in the chimeric compared to the wild-type mice as judged by immunohistochemistry and real-time RT-PCR. Thus, our results indicate that appropriate glycosylation of α-dystroglycan has an important role in the maintenance of podocyte architecture.


Subject(s)
Cell Shape , Dystroglycans/metabolism , Podocytes/metabolism , Protein Processing, Post-Translational , Walker-Warburg Syndrome/metabolism , Animals , Blotting, Western , Disease Models, Animal , Dystroglycans/genetics , Glycosylation , Immunohistochemistry , Integrin alpha3/metabolism , Membrane Proteins/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Microscopy, Electron, Transmission , Podocytes/pathology , Polymerase Chain Reaction , Proteins/genetics , Proteins/metabolism , RNA, Messenger/metabolism , Transferases , Walker-Warburg Syndrome/genetics , Walker-Warburg Syndrome/pathology
18.
Rinsho Shinkeigaku ; 51(11): 918-21, 2011 Nov.
Article in Japanese | MEDLINE | ID: mdl-22277416

ABSTRACT

The past decade of researches have revealed mutations of known or putative glycosyltransferases in several types of muscular dystrophy, including Fukuyama-type congenital muscular dystrophy. In these disorders, the function of α-dystroglycan is severely decreased, therefore they are called α-dystroglycanopathy. Recently, putative glycosyltransferase Large was shown to restore the defective function of α-dystroglycan, thus, it is an intriguing idea to apply this effect to the therapy of α-dystroglycanopathy. In the present study, we sought to test this possibility. Using several cultured cell lines, we confirmed that the overexpression of Large results in hyperglycosylation and marked enhancement of the function of α-dystroglycan. For this effect, the whole luminal domain of Large was shown to be necessary using several deletion constructs. We further generated transgenic mice overexpressing Large ubiquitously. In each tissue of the mice, the glycosylation of α-dystroglycan and its laminin binding activity was remarkably increased. Moreover, the morphological analyses on each tissue stained by H-E revealed no significant abnormality in the transgenic mice, suggesting no serious side effects by the overexpression of Large. Taken together, these results indicate that the restoration of the function of α-dystroglycan by Large should be an important molecular target to develop therapeutic strategies for α-dystroglycanopathy.


Subject(s)
Dystroglycans/metabolism , Walker-Warburg Syndrome/therapy , Animals , Cells, Cultured , Mice , Mice, Transgenic , Molecular Targeted Therapy
19.
Bull Tokyo Dent Coll ; 50(4): 191-8, 2009.
Article in English | MEDLINE | ID: mdl-20179394

ABSTRACT

The purpose of this study was to investigate the influence of anteroposterior postural change on electromyography (EMG) activity in the lateral pterygoid muscle. Subjects consisted of 7 patients attending this hospital for close examination. The inferior heads of the lateral pterygoid and masseter muscles were chosen as evaluation sites. For the EMG recordings, the test movement was opening and closing of the mouth; postural conditions were the upright and supine positions. The mean value of EMG activity in the inferior head of the lateral pterygoid muscle was calculated. During mouth-opening in 5 out of the 7 patients, and during mouth-closing in 2 out of the 7 patients, mean value of EMG activity differed significantly with body position. Mean value of EMG activity was reduced in the supine position. The results revealed that anteroposterior postural change affected mean value of EMG activity in this muscle.


Subject(s)
Mandible/physiology , Pterygoid Muscles/physiology , Adult , Dental Occlusion , Electromyography , Humans , Male , Masseter Muscle/physiology , Middle Aged , Movement , Posture , Range of Motion, Articular , Temporomandibular Joint/physiology
20.
Mech Dev ; 126(3-4): 107-16, 2009.
Article in English | MEDLINE | ID: mdl-19114101

ABSTRACT

Protein O-linked mannose beta1,2-N-acetylglucosaminyltransferase 1 (POMGnT1) is an enzyme that transfers N-acetylglucosamine to O-mannose of glycoproteins. Mutations of the POMGnT1 gene cause muscle-eye-brain (MEB) disease. To obtain a better understanding of the pathogenesis of MEB disease, we mutated the POMGnT1 gene in mice using a targeting technique. The mutant muscle showed aberrant glycosylation of alpha-DG, and alpha-DG from mutant muscle failed to bind laminin in a binding assay. POMGnT1(-/-) muscle showed minimal pathological changes with very low-serum creatine kinase levels, and had normally formed muscle basal lamina, but showed reduced muscle mass, reduced numbers of muscle fibers, and impaired muscle regeneration. Importantly, POMGnT1(-/-) satellite cells proliferated slowly, but efficiently differentiated into multinuclear myotubes in vitro. Transfer of a retrovirus vector-mediated POMGnT1 gene into POMGnT1(-/-) myoblasts completely restored the glycosylation of alpha-DG, but proliferation of the cells was not improved. Our results suggest that proper glycosylation of alpha-DG is important for maintenance of the proliferative activity of satellite cells in vivo.


Subject(s)
Myoblasts/cytology , Myoblasts/enzymology , N-Acetylglucosaminyltransferases/deficiency , Animals , Cell Proliferation , Cells, Cultured , Creatine Kinase/blood , Embryonic Stem Cells/metabolism , Fibrosis/complications , Fibrosis/enzymology , Fibrosis/pathology , Gene Deletion , Gene Targeting , Immunohistochemistry , Mice , Muscle, Skeletal/enzymology , Muscle, Skeletal/pathology , Muscle, Skeletal/ultrastructure , Muscular Dystrophy, Animal/blood , Muscular Dystrophy, Animal/complications , Muscular Dystrophy, Animal/enzymology , Muscular Dystrophy, Animal/pathology , Myoblasts/ultrastructure , N-Acetylglucosaminyltransferases/metabolism , Phenotype , Regeneration , Satellite Cells, Skeletal Muscle/enzymology , Satellite Cells, Skeletal Muscle/pathology , Satellite Cells, Skeletal Muscle/ultrastructure , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL