Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Drug Metab Pharmacokinet ; 34(5): 334-339, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31401033

ABSTRACT

Flavin-containing monooxygenase 3 (FMO3) is a polymorphic xenobiotic- and dietary compound-metabolizing enzyme associated with the genetic disorder trimethylaminuria. We phenotyped 428 Japanese subjects using traditional urinary phenotyping assays and identified two subjects with <20% FMO3 metabolic capacity. Both subjects had novel frameshift mutations. Proband 1 harbored a novel CC deletion resulting in p.[(Pro153Gln fs; Phe166Ter)] FMO3, which was in trans configuration with p.(Cys197Ter). Proband 2 harbored a novel T deletion resulting in p.[(Met211Arg fs; Val220Ter)] FMO3, which was in trans configuration with p.[(Val257Met; Met260Val)]. We also analyzed a new large Japanese database for novel single nucleotide substitutions of FMO3 and identified the following variants with very low frequencies (<∼0.1%): p.(Lys56Glu), p.(Ser112Asn), p.(Asn164Lys), p.(Gly191Cys), p.(Ile199Ser), p.(Pro248Thr), p.(Pro248Leu), p.(Asp286Tyr), and p.(Ala311Pro). Recombinant FMO3 proteins of the above and unanalyzed variants underwent kinetic analysis of their trimethylamine/benzydamine N-oxygenation activities. Gly191Cys, Ile199Ser, Asp286Tyr, and Ala311Pro variant FMO3 proteins exhibited severely decreased activities (Vmax/Km <5% of wild-type). Although these new variants were rare alleles in Japanese self-reported trimethylaminuria sufferers and in the large genomic database, we found that most Japanese individuals compound heterozygous or homozygous for any of these missense FMO3 variants or known severe mutations [e.g., p.(Cys197Ter)] had impaired FMO3-dependent N-oxygenation of malodorous trimethylamine.


Subject(s)
Databases, Genetic , Metabolism, Inborn Errors/genetics , Methylamines/urine , Oxygenases/genetics , Whole Genome Sequencing , Child, Preschool , Female , Genetic Variation/genetics , Humans , Japan , Male , Metabolism, Inborn Errors/metabolism , Methylamines/metabolism , Middle Aged , Oxygenases/metabolism , Pedigree , Phenotype
SELECTION OF CITATIONS
SEARCH DETAIL
...