Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Bioorg Med Chem ; 19(10): 3039-53, 2011 May 15.
Article in English | MEDLINE | ID: mdl-21515056

ABSTRACT

Inhibition of acetyl-CoA carboxylases has the potential for modulating long chain fatty acid biosynthesis and mitochondrial fatty acid oxidation. Hybridization of weak inhibitors of ACC2 provided a novel, moderately potent but lipophilic series. Optimization led to compounds 33 and 37, which exhibit potent inhibition of human ACC2, 10-fold selectivity over inhibition of human ACC1, good physical and in vitro ADME properties and good bioavailability. X-ray crystallography has shown this series binding in the CT-domain of ACC2 and revealed two key hydrogen bonding interactions. Both 33 and 37 lower levels of hepatic malonyl-CoA in vivo in obese Zucker rats.


Subject(s)
Acetyl-CoA Carboxylase/antagonists & inhibitors , Diabetes Mellitus, Type 2/drug therapy , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Obesity/drug therapy , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology , Acetyl-CoA Carboxylase/metabolism , Animals , Crystallography, X-Ray , Diabetes Mellitus, Type 2/enzymology , Drug Design , Enzyme Inhibitors/pharmacokinetics , Enzyme Inhibitors/therapeutic use , Fatty Acids/metabolism , Humans , Liver/drug effects , Liver/enzymology , Male , Malonyl Coenzyme A/metabolism , Mice , Mice, Inbred C57BL , Models, Molecular , Obesity/enzymology , Rats , Rats, Zucker , Small Molecule Libraries/pharmacokinetics , Small Molecule Libraries/therapeutic use , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...