Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Matern Fetal Neonatal Med ; 35(3): 457-464, 2022 Feb.
Article in English | MEDLINE | ID: mdl-32019381

ABSTRACT

BACKGROUND: Advances in omics and computational Artificial Intelligence (AI) have been said to be key to meeting the objectives of precision cardiovascular medicine. The focus of precision medicine includes a better assessment of disease risk and understanding of disease mechanisms. Our objective was to determine whether significant epigenetic changes occur in isolated, non-syndromic CoA. Further, we evaluated the AI analysis of DNA methylation for the prediction of CoA. METHODS: Genome-wide DNA methylation analysis of newborn blood DNA was performed in 24 isolated, non-syndromic CoA cases and 16 controls using the Illumina HumanMethylation450 BeadChip arrays. Cytosine nucleotide (CpG) methylation changes in CoA in each of 450,000 CpG loci were determined. Ingenuity pathway analysis (IPA) was performed to identify molecular and disease pathways that were epigenetically dysregulated. Using methylation data, six artificial intelligence (AI) platforms including deep learning (DL) was used for CoA detection. RESULTS: We identified significant (FDR p-value ≤ .05) methylation changes in 65 different CpG sites located in 75 genes in CoA subjects. DL achieved an AUC (95% CI) = 0.97 (0.80-1) with 95% sensitivity and 98% specificity. Gene ontology (GO) analysis yielded epigenetic alterations in important cardiovascular developmental genes and biological processes: abnormal morphology of cardiovascular system, left ventricular dysfunction, heart conduction disorder, thrombus formation, and coronary artery disease. CONCLUSION: In an exploratory study we report the use of AI and epigenomics to achieve important objectives of precision cardiovascular medicine. Accurate prediction of CoA was achieved using a newborn blood spot. Further, we provided evidence of a significant epigenetic etiology in isolated CoA development.


Subject(s)
Cardiovascular System , Epigenomics , Artificial Intelligence , Case-Control Studies , CpG Islands , DNA Methylation , Epigenesis, Genetic , Humans , Infant, Newborn , Precision Medicine
2.
PLoS One ; 13(9): e0203893, 2018.
Article in English | MEDLINE | ID: mdl-30212560

ABSTRACT

Tetralogy of Fallot (TOF) is the most common Critical Congenital Heart Defect (CCHD). The etiology of TOF is unknown in most cases. Preliminary data from our group and others suggest that epigenetic changes may play an important role in CHD. Epidemiologically, a significant percentage of CHD including TOF fail to be diagnosed in the prenatal and early newborn period which can negatively affect health outcomes. We performed genome-wide methylation assay in newborn blood in 24 non-syndromic TOF cases and 24 unaffected matched controls using Illumina Infinium HumanMethylation450 BeadChips. We identified 64 significantly differentially methylated CpG sites in TOF cases, of which 25 CpG sites had high predictive accuracy for TOF, based on the area under the receiver operating characteristics curve (AUC ROC) ≥ 0.90). The CpG methylation difference between TOF and controls was ≥10% in 51 CpG targets suggesting biological significance. Gene ontology analysis identified significant biological processes and functions related to these differentially methylated genes, including: CHD development, cardiomyopathy, diabetes, immunological, inflammation and other plausible pathways in CHD development. Multiple genes known or plausibly linked to heart development and post-natal heart disease were found to be differentially methylated in the blood DNA of newborns with TOF including: ABCB1, PPP2R5C, TLR1, SELL, SCN3A, CREM, RUNX and LHX9. We generated novel and highly accurate putative molecular markers for TOF detection using leucocyte DNA and thus provided information on pathogenesis of TOF.


Subject(s)
Epigenesis, Genetic , Tetralogy of Fallot/blood , Tetralogy of Fallot/genetics , Area Under Curve , Computational Biology , CpG Islands , DNA Methylation , Genome-Wide Association Study , Humans , Infant, Newborn , ROC Curve , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...