Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Nutr ; 11: 1348235, 2024.
Article in English | MEDLINE | ID: mdl-38571753

ABSTRACT

Shiitake mushrooms are renowned for their popularity and robust nutritional value, are susceptible to spoilage due to their inherent biodegradability. Nevertheless, because of their lack of protection, these mushrooms have a short shelf life. Throughout the post-harvest phase, mushrooms experience a persistent decline in quality. This is evidenced by changes such as discoloration, reduced moisture content, texture changes, an increase in microbial count, and the depletion of nutrients and flavor. Ensuring postharvest quality preservation and prolonging mushroom shelf life necessitates the utilization of post-harvest preservation techniques, including physical, chemical, and thermal processes. This review provides a comprehensive overview of the deterioration processes affecting mushroom quality, covering elements such as moisture loss, discoloration, texture alterations, increased microbial count, and the depletion of nutrients and flavor. It also explores the key factors influencing these processes, such as temperature, relative humidity, water activity, and respiration rate. Furthermore, the review delves into recent progress in preserving mushrooms through techniques such as drying, cooling, packaging, irradiation, washing, and coating.

2.
Plant Physiol Biochem ; 199: 107717, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37150011

ABSTRACT

Unfavorable climatic conditions, such as low temperatures, often hinder the growth and production of crops worldwide. The F-box protein-encoding gene family performs an essential role in plant stress resistance. However, a comprehensive analysis of the F-box gene family in cabbage (Brassica oleracea var capitata L.) has not been reported yet. In this study, genome-wide characterization of F-box proteins in cabbage yielded 303 BoFBX genes and 224 BoFBX genes unevenly distributed on 9 chromosomes of cabbage. Phylogenetic analysis of 303 BoFBX genes was classified into nine distinct subfamily groups (GI-GIX). Analysis of the gene structure of BoFBX genes indicated that most genes within the same clade are highly conserved. In addition, tissue-specific expression analysis revealed that six F-box genes in cabbage showed the highest expression in rosette leaves, followed by roots and stems and the lowest expression was observed in the BoFBX156 gene. In contrast, the expression of the other five genes, BoFBX100, BoFBX117, BoFBX136, BoFBX137 and BoFBX213 was observed to be upregulated in response to low-temperature stress. Moreover, we found that the expression level of the BoFBX gene in the cold-tolerant cultivar "ZG" was higher than that in cold-sensitive "YC" with the extension of stress duration, while expression levels of each gene in "ZG" were higher than "YC" at 24 h. Knowledge of the various functions provided by BoFBXs genes and their expression patterns provides a firm theoretical foundation for explaining the functions of BoFBXs, thereby contributing to the molecular breeding process of cabbage.


Subject(s)
Brassica , Genome, Plant , Temperature , Gene Expression Profiling , Phylogeny , Brassica/genetics , Brassica/metabolism , Gene Expression Regulation, Plant , Plant Proteins/metabolism
3.
Front Plant Sci ; 13: 908511, 2022.
Article in English | MEDLINE | ID: mdl-35812899

ABSTRACT

Heat shock protein 90 (Hsp90) plays an important role in plant developmental regulation and defensive reactions. Several plant species have been examined for the Hsp90 family gene. However, the Hsp90 gene family in cabbage has not been well investigated to date. In this study, we have been discovered 12 BoHsp90 genes in cabbage (Brassica oleracea var. capitata L.). These B. oleracea Hsp90 genes were classified into five groups based on phylogenetic analysis. Among the five groups, group one contains five Hsp90 genes, including BoHsp90-1, BoHsp90-2, BoHsp90-6, BoHsp90-10, and BoHsp90-12. Group two contains three Hsp90 genes, including BoHsp90-3, BoHsp90-4, and BoHsp90. Group three only includes one Hsp90 gene, including BoHsp90-9. Group four were consisting of three Hsp90 genes including BoHsp90-5, BoHsp90-7, and BoHsp90-8, and there is no Hsp90 gene from B. oleracea in the fifth group. Synteny analysis showed that a total of 12 BoHsp90 genes have a collinearity relationship with 5 Arabidopsis genes and 10 Brassica rapa genes. The promoter evaluation revealed that the promoters of B. oleracea Hsp90 genes included environmental stress-related and hormone-responsive cis-elements. RNA-seq data analysis indicates that tissue-specific expression of BoHsp90-9 and BoHsp90-5 were highly expressed in stems, leaves, silique, and flowers. Furthermore, the expression pattern of B. oleracea BoHsp90 exhibited that BoHsp90-2, BoHsp90-3, BoHsp90-7, BoHsp90-9, BoHsp90-10, and BoHsp90-11 were induced under cold stress, which indicates these Hsp90 genes perform a vital role in cold acclimation and supports in the continual of normal growth and development process. The cabbage Hsp90 gene family was found to be differentially expressed in response to cold stress, suggesting that these genes play an important role in cabbage growth and development under cold conditions.

SELECTION OF CITATIONS
SEARCH DETAIL
...