Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Genet ; 38(2): 234-9, 2006 Feb.
Article in English | MEDLINE | ID: mdl-16415889

ABSTRACT

Cardiovascular disorders are influenced by genetic and environmental factors. The TIGR rodent expression web-based resource (TREX) contains over 2,200 microarray hybridizations, involving over 800 animals from 18 different rat strains. These strains comprise genetically diverse parental animals and a panel of chromosomal substitution strains derived by introgressing individual chromosomes from normotensive Brown Norway (BN/NHsdMcwi) rats into the background of Dahl salt sensitive (SS/JrHsdMcwi) rats. The profiles document gene-expression changes in both genders, four tissues (heart, lung, liver, kidney) and two environmental conditions (normoxia, hypoxia). This translates into almost 400 high-quality direct comparisons (not including replicates) and over 100,000 pairwise comparisons. As each individual chromosomal substitution strain represents on average less than a 5% change from the parental genome, consomic strains provide a useful mechanism to dissect complex traits and identify causative genes. We performed a variety of data-mining manipulations on the profiles and used complementary physiological data from the PhysGen resource to demonstrate how TREX can be used by the cardiovascular community for hypothesis generation.


Subject(s)
Databases, Genetic , Disease Models, Animal , Genomics , Heart Diseases/genetics , Hematologic Diseases/genetics , Lung Diseases/genetics , Animals , Gene Expression Profiling , Genetic Variation , Genomics/methods , Heart Diseases/physiopathology , Hematologic Diseases/physiopathology , Hypoxia/chemically induced , Internet , Lung Diseases/physiopathology , Male , Microarray Analysis , Myocardium/metabolism , Rats , Rats, Inbred BN , Rats, Inbred Dahl , Regulatory Sequences, Nucleic Acid/genetics
2.
Comp Biochem Physiol C Toxicol Pharmacol ; 138(3): 363-73, 2004 Jul.
Article in English | MEDLINE | ID: mdl-15533794

ABSTRACT

Longevity is inversely proportional to ambient temperature in ectothermic organisms such as fish. However, the mechanism by which reducing temperature over a physiological range increases life span is not known and available data are derived primarily from invertebrates. With a rodent-like longevity and abundant biological resources, the zebrafish is an ideal vertebrate ectothermic model in which to investigate this phenomenon. As an initial approach, the effects of a year-long 10 degrees C reduction in water temperature on global gene expression in tail skeletal muscle from adult zebrafish were determined using an oligonucleotide microarray representing 15,512 genes. Expression levels for approximately 600 genes were up-regulated by 1.7-fold or greater by the reduction in temperature, while a similar number of transcripts were down regulated by more than 1.7-fold. Using gene ontology (GO) classifications for molecular function, two functional groups, "oxygen and reactive oxygen species metabolism" and "response to oxidative stress," were found to be overrepresented among up-regulated genes. Transcripts levels for the genes in these two categories were increased by temperature reduction (TR). However, temperature reduction did not suppress lipid peroxidation potential, protein carbonyl content, or 8-oxoguanine level. Additional studies will be required to further delineate the role of altered gene expression and oxidative stress on the longevity-promoting effects of temperature reduction.


Subject(s)
Aging/physiology , Gene Expression Regulation , Muscle, Skeletal/metabolism , Oxidative Stress , Temperature , Zebrafish/genetics , Animals , Down-Regulation/genetics , Feeding Behavior , Gene Expression Profiling/standards , Oligonucleotide Array Sequence Analysis/standards , Quality Control , Zebrafish/growth & development , Zebrafish Proteins/genetics
3.
Comp Biochem Physiol C Toxicol Pharmacol ; 138(3): 351-62, 2004 Jul.
Article in English | MEDLINE | ID: mdl-15533793

ABSTRACT

We analyzed 15,512 unique transcripts from wild-type Danio rerio using a long oligonucleotide microarray containing >16,000 65-mers probes. Total RNA was isolated from staged embryos at 2 h intervals over a 24-h period. On average, at any given time point, 27% of the probe set detected corresponding transcripts in embryonic RNA. There were two predominant patterns in the nearly 4000 genes that changed expression in at least one time point during the first 24 hpf. At 12 hpf, we detected 420 up-regulated and 386 down-regulated genes. By 24 hpf, the number of up- and down-regulated genes had increased to 954 and 766, respectively. While the majority of these genes maintained their new level of expression for the duration of the time course, we identified five genes with phasic regulation over the 24-h time course. Two of these genes, germ cell nuclear factor and mesogenin, have been identified as being expressed during gastrulation (5 1/4 to 10 h postfertilization) and subsequently repressed. A cluster containing 36 distinct ribosomal proteins was up-regulated at 12 h, indicating a capability for de novo protein synthesis during and after this stage. Twenty-three muscle-specific genes were up-regulated late during the initial 24 hpf, corresponding to the development and differentiation of the somites.


Subject(s)
Gene Expression Profiling , Gene Expression Regulation, Developmental , Oligonucleotide Array Sequence Analysis , Zebrafish Proteins/genetics , Zebrafish/embryology , Zebrafish/genetics , Animals , Cluster Analysis , Cytochrome P-450 Enzyme System/metabolism , Embryo, Nonmammalian/embryology , Embryo, Nonmammalian/metabolism , Gene Expression Profiling/standards , In Situ Hybridization , Nucleic Acid Hybridization , Oligonucleotide Array Sequence Analysis/standards , Quality Control , RNA, Messenger/analysis , Reproducibility of Results , Retinoic Acid 4-Hydroxylase , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...