Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Genes (Basel) ; 13(11)2022 11 10.
Article in English | MEDLINE | ID: mdl-36360327

ABSTRACT

Abiotic stresses cause a significant decrease in productivity and growth in agricultural products, especially barley. Breeding has been considered to create resistance against abiotic stresses. Pyramiding genes for tolerance to abiotic stresses through selection based on molecular markers connected to Mega MQTLs of abiotic tolerance can be one of the ways to reach Golden Barley. In this study, 1162 original QTLs controlling 116 traits tolerant to abiotic stresses were gathered from previous research and mapped from various populations. A consensus genetic map was made, including AFLP, SSR, RFLP, RAPD, SAP, DArT, EST, CAPS, STS, RGA, IFLP, and SNP markers based on two genetic linkage maps and 26 individual linkage maps. Individual genetic maps were created by integrating individual QTL studies into the pre-consensus map. The consensus map covered a total length of 2124.43 cM with an average distance of 0.25 cM between markers. In this study, 585 QTLs and 191 effective genes related to tolerance to abiotic stresses were identified in MQTLs. The most overlapping QTLs related to tolerance to abiotic stresses were observed in MQTL6.3. Furthermore, three MegaMQTL were identified, which explained more than 30% of the phenotypic variation. MQTLs, candidate genes, and linked molecular markers identified are essential in barley breeding and breeding programs to develop produce cultivars resistant to abiotic stresses.


Subject(s)
Hordeum , Hordeum/genetics , Amplified Fragment Length Polymorphism Analysis , Random Amplified Polymorphic DNA Technique , Plant Breeding , Stress, Physiological/genetics
2.
Sci Rep ; 12(1): 9709, 2022 06 11.
Article in English | MEDLINE | ID: mdl-35690641

ABSTRACT

Hybrid breeding is fast becoming a key instrument in plants' crop productivity. Grain yield performance of hybrids (F1) under different parental genetic features has consequently received considerable attention in the literature. The main objective of this study was to introduce a new method, known as AI_HIB under different parental genetic features using artificial intelligence (AI) techniques. In so doing, the rice cultivars TAM, KHZ, SPD, GHB, IR28, AHM, SHP and their F1 hybrid were used. Having recorded Grain Yield (GY), Unfertile Panicle Number (UFP), Plant Height (HE), Days to Flowering (DF), Panicle Exertion (PE), Panicle Length (PL), Filled Grain Number (FG), Primary Branches Number (PBN), Flag Leaf Length (FLL), Flag Leaf Width (FLW), Flag Leaf Area (FLA), and Plant Biomass (BI) in the field, we include these features in our proposed model. When using the GA and PSO algorithm to select the features, grain yield had the highest frequency at the input of the Artificial Neural Network (ANN), Adaptive Neuro-Fuzzy Inference System (ANFIS) and Support Vector Machine (SVM) structure. The AI_HIB_ANN result revealed that the trained neural network with parental data enjoyed a good ability to predict the response of hybrid performance. Findings also reflected that the obtained MSE was low and R2 value was greater than 96%. AI_HIB_SVM and AI_HIB_ANFIS showed that measuring attributes could predict number of primary branches, plant height, days to flowering and grain yield per plant with accuracies of 99%. These findings have significant implications as it presents a new promising prediction method for hybrid rice yield based on the characteristics of the parent lines by AI. These findings contribute to provide a basis for designing a smartphone application in terms of the AI_HIB_SVM and AI_HIB_ANFIS methods to easily predict hybrid performance with a high accuracy rate.


Subject(s)
Oryza , Artificial Intelligence , Edible Grain/genetics , Oryza/genetics , Plant Breeding , Plant Leaves/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...