Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Pollut Res Int ; 28(9): 10804-10817, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33099737

ABSTRACT

Increasing groundwater salinity has recently raised severe environmental and health concerns around the world. Advancement of the novel methods for spatial salinity modeling and prediction would be essential for effective management of the resources and planning mitigation policies. The current research presents the application of machine learning (ML) models in groundwater salinity mapping based on the dichotomous predictions. The groundwater salinity is predicted using the essential factors (i.e., identified by the simulated annealing feature selection methodology) through k-fold cross-validation methodology. Six ML models, namely, flexible discriminant analysis (FDA), mixture discriminant analysis (MAD), boosted regression tree (BRT), multivariate adaptive regression spline (MARS), random forest (RF), support vector machine (SVM), were employed to groundwater salinity mapping. The results of the modeling indicated that the SVM model had superior performance than other models. Variables of soil order, groundwater withdrawal, precipitation, land use, and elevation had the most contribute to groundwater salinity mapping. Results highlighted that the southern parts of the region and some parts in the north, northeast, and west have a high groundwater salinity, in which these areas are mostly matched with soil order of Entisols, bareland areas, and low elevations.


Subject(s)
Groundwater , Salinity , Environmental Monitoring , Machine Learning , Soil
2.
Sci Total Environ ; 651(Pt 2): 2087-2096, 2019 Feb 15.
Article in English | MEDLINE | ID: mdl-30321730

ABSTRACT

Floods, as a catastrophic phenomenon, have a profound impact on ecosystems and human life. Modeling flood susceptibility in watersheds and reducing the damages caused by flooding is an important component of environmental and water management. The current study employs two new algorithms for the first time in flood susceptibility analysis, namely multivariate discriminant analysis (MDA), and classification and regression trees (CART), incorporated with a widely used algorithm, the support vector machine (SVM), to create a flood susceptibility map using an ensemble modeling approach. A flood susceptibility map was developed using these models along with a flood inventory map and flood conditioning factors (including altitude, slope, aspect, curvature, distance from river, topographic wetness index, drainage density, soil depth, soil hydrological groups, land use, and lithology). The case study area was the Khiyav-Chai watershed in Iran. To ensure a more accurate ensemble model, this study proposed a framework for flood susceptibility assessment where only those models with an accuracy of >80% were permissible for use in ensemble modeling. The relative importance of factors was determined using the Jackknife test. Results indicated that the MDA model had the highest predictive accuracy (89%), followed by the SVM (88%) and CART (0.83%) models. Sensitivity analysis showed that slope percent, drainage density, and distance from river were the most important factors in flood susceptibility mapping. The ensemble modeling approach indicated that residential areas at the outlet of the watershed were very susceptible to flooding, and that these areas should, therefore, be prioritized for the prevention and remediation of floods.

3.
Sci Total Environ ; 615: 272-281, 2018 Feb 15.
Article in English | MEDLINE | ID: mdl-28982076

ABSTRACT

Suspended sediment load (SSL) modelling is an important issue in integrated environmental and water resources management, as sediment affects water quality and aquatic habitats. Although classification and regression tree (CART) algorithms have been applied successfully to ecological and geomorphological modelling, their applicability to SSL estimation in rivers has not yet been investigated. In this study, we evaluated use of a CART model to estimate SSL based on hydro-meteorological data. We also compared the accuracy of the CART model with that of the four most commonly used models for time series modelling of SSL, i.e. adaptive neuro-fuzzy inference system (ANFIS), multi-layer perceptron (MLP) neural network and two kernels of support vector machines (RBF-SVM and P-SVM). The models were calibrated using river discharge, stage, rainfall and monthly SSL data for the Kareh-Sang River gauging station in the Haraz watershed in northern Iran, where sediment transport is a considerable issue. In addition, different combinations of input data with various time lags were explored to estimate SSL. The best input combination was identified through trial and error, percent bias (PBIAS), Taylor diagrams and violin plots for each model. For evaluating the capability of the models, different statistics such as Nash-Sutcliffe efficiency (NSE), Kling-Gupta efficiency (KGE) and percent bias (PBIAS) were used. The results showed that the CART model performed best in predicting SSL (NSE=0.77, KGE=0.8, PBIAS<±15), followed by RBF-SVM (NSE=0.68, KGE=0.72, PBIAS<±15). Thus the CART model can be a helpful tool in basins where hydro-meteorological data are readily available.

4.
Sci Total Environ ; 644: 954-962, 2018 Dec 10.
Article in English | MEDLINE | ID: mdl-30743892

ABSTRACT

This study aimed to develop a novel framework for risk assessment of nitrate groundwater contamination by integrating chemical and statistical analysis for an arid region. A standard method was applied for assessing the vulnerability of groundwater to nitrate pollution in Lenjanat plain, Iran. Nitrate concentration were collected from 102 wells of the plain and used to provide pollution occurrence and probability maps. Three machine learning models including boosted regression trees (BRT), multivariate discriminant analysis (MDA), and support vector machine (SVM) were used for the probability of groundwater pollution occurrence. Afterwards, an ensemble modeling approach was applied for production of the groundwater pollution occurrence probability map. Validation of the models was carried out using area under the receiver operating characteristic curve method (AUC); values above 80% were selected to contribute in ensembling process. Results indicated that accuracy for the three models ranged from 0.81 to 0.87, therefore all models were considered for ensemble modeling process. The resultant groundwater pollution risk (produced by vulnerability, pollution, and probability maps) indicated that the central regions of the plain have high and very high risk of nitrate pollution further confirmed by the exiting landuse map. The findings may provide very helpful information in decision making for groundwater pollution risk management especially in semi-arid regions.

SELECTION OF CITATIONS
SEARCH DETAIL
...