Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
bioRxiv ; 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38617350

ABSTRACT

Signaling through the platelet-derived growth factor receptor alpha (PDGFRa) plays a critical role in craniofacial development, as mutations in PDGFRA are associated with cleft lip/palate in humans and Pdgfra mutant mouse models display varying degrees of facial clefting. Phosphatidylinositol 3-kinase (PI3K)/Akt is the primary effector of PDGFRα signaling during skeletal development in the mouse. We previously demonstrated that Akt phosphorylates the RNA-binding protein serine/arginine-rich splicing factor 3 (Srsf3) downstream of PI3K-mediated PDGFRa signaling in mouse embryonic palatal mesenchyme (MEPM) cells, leading to its nuclear translocation. We further showed that ablation of Srsf3 in the murine neural crest lineage results in severe midline facial clefting, due to defects in proliferation and survival of cranial neural crest cells, and widespread alternative RNA splicing (AS) changes. Here, we sought to determine the molecular mechanisms by which Srsf3 activity is regulated downstream of PDGFRa signaling to control AS of transcripts necessary for craniofacial development. We demonstrated via enhanced UV-crosslinking and immunoprecipitation (eCLIP) of MEPM cells that PDGF-AA stimulation leads to preferential binding of Srsf3 to exons and loss of binding to canonical Srsf3 CA-rich motifs. Through the analysis of complementary RNA-seq data, we showed that Srsf3 activity results in the preferential inclusion of exons with increased GC content and lower intron to exon length ratio. Moreover, we found that the subset of transcripts that are bound by Srsf3 and undergo AS upon PDGFRα signaling commonly encode regulators of PI3K signaling and early endosomal trafficking. Functional validation studies further confirmed that Srsf3 activity downstream of PDGFRα signaling leads to retention of the receptor in early endosomes and increases in downstream PI3K-mediated Akt signaling. Taken together, our findings reveal that growth factor-mediated phosphorylation of an RNA-binding protein underlies gene expression regulation necessary for mammalian craniofacial development.

2.
DNA Repair (Amst) ; 135: 103648, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38382170

ABSTRACT

DNA damage response (DDR) is a complex process, essential for cell survival. Especially deleterious type of DNA damage are DNA double-strand breaks (DSB), which can lead to genomic instability and malignant transformation if not repaired correctly. The central player in DSB detection and repair is the ATM kinase which orchestrates the action of several downstream factors. Recent studies have suggested that long non-coding RNAs (lncRNAs) are involved in DDR. Here, we aimed to identify lncRNAs induced upon DNA damage in an ATM-dependent manner. DNA damage was induced by ionizing radiation (IR) in immortalized lymphoblastoid cell lines derived from 4 patients with ataxia-telangiectasia (AT) and 4 healthy donors. RNA-seq revealed 10 lncRNAs significantly induced 1 h after IR in healthy donors, whereas none in AT patients. 149 lncRNAs were induced 8 h after IR in the control group, while only three in AT patients. Among IR-induced mRNAs, we found several genes with well-known functions in DDR. Gene Set Enrichment Analysis and Gene Ontology revealed delayed induction of key DDR pathways in AT patients compared to controls. The induction and dynamics of selected 9 lncRNAs were confirmed by RT-qPCR. Moreover, using a specific ATM inhibitor we proved that the induction of those lncRNAs is dependent on ATM. Some of the detected lncRNA genes are localized next to protein-coding genes involved in DDR. We observed that induction of lncRNAs after IR preceded changes in expression of adjacent genes. This indicates that IR-induced lncRNAs may regulate the transcription of nearby genes. Subcellular fractionation into chromatin, nuclear, and cytoplasmic fractions revealed that the majority of studied lncRNAs are localized in chromatin. In summary, our study revealed several lncRNAs induced by IR in an ATM-dependent manner. Their genomic co-localization and co-expression with genes involved in DDR suggest that those lncRNAs may be important players in cellular response to DNA damage.


Subject(s)
Ataxia Telangiectasia , RNA, Long Noncoding , Humans , RNA, Long Noncoding/genetics , DNA Damage , Chromatin , Cell Line , Ataxia Telangiectasia Mutated Proteins
3.
bioRxiv ; 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38260612

ABSTRACT

Nonsense variants underlie many genetic diseases. The phenotypic impact of nonsense variants is determined by Nonsense-mediated mRNA decay (NMD), which degrades transcripts with premature termination codons (PTCs). NMD activity varies across transcripts and cellular contexts via poorly understood mechanisms. Here, by leveraging human genetic datasets, we uncover that the amino acid preceding the PTC dramatically affects NMD activity in human cells. We find that glycine codons in particular support high levels of NMD and are enriched before PTCs but depleted before normal termination codons (NTCs). Gly-PTC enrichment is most pronounced in human genes that tolerate loss-of-function variants. This suggests a strong biological impact for Gly-PTC in ensuring robust elimination of potentially toxic truncated proteins from non-essential genes. Biochemical assays revealed that the peptide release rate during translation termination is highly dependent on the identity of the amino acid preceding the stop codon. This release rate is the most critical feature determining NMD activity across our massively parallel reporter assays. Together, we conclude that NMD activity is significantly modulated by the "window of opportunity" offered by translation termination kinetics. Integrating the window of opportunity model with the existing framework of NMD would enable more accurate nonsense variant interpretation in the clinic.

4.
RNA ; 29(10): 1458-1470, 2023 10.
Article in English | MEDLINE | ID: mdl-37369529

ABSTRACT

RNA-binding proteins (RBPs) are key regulators of gene expression. Small molecules targeting these RBP-RNA interactions are a rapidly emerging class of therapeutics for treating a variety of diseases. Ro-08-2750 (Ro) is a small molecule identified as a competitive inhibitor of Musashi (MSI)-RNA interactions. Here, we show that multiple Ro-dependent cellular phenotypes, specifically adrenocortical steroid production and cell viability, are Musashi-2 (MSI2)-independent. Using an unbiased proteome-wide approach, we discovered Ro broadly interacts with RBPs, many containing RRM domains. To confirm this finding, we leveraged the large-scale ENCODE data to identify a subset of RBPs whose depletion phenocopies Ro inhibition, indicating Ro is a promiscuous inhibitor of multiple RBPs. Consistent with broad disruption of ribonucleoprotein complexes, Ro treatment leads to stress granule formation. This strategy represents a generalizable framework for validating the specificity and identifying targets of RBP inhibitors in a cellular context.


Subject(s)
RNA-Binding Proteins , RNA , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , RNA/metabolism , Proteome/genetics , Phenotype
5.
Int J Mol Sci ; 23(16)2022 Aug 20.
Article in English | MEDLINE | ID: mdl-36012673

ABSTRACT

In recent years, growing evidence demonstrates that mammalian Nanos RNA-binding proteins (Nanos1, Nanos2, and Nanos3), known for their indispensable roles in germline development, are overexpressed in a variety of cancers. This overexpression contributes to various oncogenic properties including cancer growth, invasiveness, and metastasis. Here, we highlight recent findings regarding the role of mammalian Nanos RNA-binding proteins and the mechanisms of their overexpression in cancer. In addition, we present expression profiles of human NANOS genes and their oncogenic transcriptional regulators obtained from publicly available cancer and normal tissue RNA-Seq datasets. Altogether, we emphasize the functional significance of NANOS proteins across human cancers as well as highlight the missing links to understanding the full scope of their role in carcinogenesis.


Subject(s)
Neoplasms , RNA-Binding Proteins , Germ Cells/metabolism , Humans , Neoplasms/genetics , Neoplasms/metabolism , RNA-Binding Proteins/metabolism , Transcription Factors/metabolism
6.
Int J Mol Sci ; 23(12)2022 Jun 13.
Article in English | MEDLINE | ID: mdl-35743036

ABSTRACT

Nanos RNA-binding proteins are critical factors of germline development throughout the animal kingdom and their dysfunction causes infertility. During evolution, mammalian Nanos paralogues adopted divergent roles in germ cell biology. However, the molecular basis behind this divergence, such as their target mRNAs, remains poorly understood. Our RNA-sequencing analysis in a human primordial germ cell model-TCam-2 cell line revealed distinct pools of genes involved in the cell cycle process downregulated upon NANOS1 and NANOS3 overexpression. We show that NANOS1 and NANOS3 proteins influence different stages of the cell cycle. Namely, NANOS1 is involved in the G1/S and NANOS3 in the G2/M phase transition. Many of their cell cycle targets are known infertility and cancer-germ cell genes. Moreover, NANOS3 in complex with RNA-binding protein PUM1 causes 3'UTR-mediated repression of FOXM1 mRNA encoding a transcription factor crucial for G2/M phase transition. Interestingly, while NANOS3 and PUM1 act as post-transcriptional repressors of FOXM1, FOXM1 potentially acts as a transcriptional activator of NANOS3, PUM1, and itself. Finally, by utilizing publicly available RNA-sequencing datasets, we show that the balance between FOXM1-NANOS3 and FOXM1-PUM1 expression levels is disrupted in testis cancer, suggesting a potential role in this disease.


Subject(s)
Germ Cells , Infertility , Animals , Cell Cycle/genetics , Cell Division , Forkhead Box Protein M1/metabolism , Germ Cells/metabolism , Humans , Infertility/metabolism , Male , Mammals/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA-Binding Proteins/metabolism , Transcription Factors/metabolism
7.
J Biomol Struct Dyn ; 40(7): 3038-3045, 2022 04.
Article in English | MEDLINE | ID: mdl-33200684

ABSTRACT

A new mechanism of RNA circularization driven by specific binding of miRNAs is described. We identified the 71 CUUCC pentanucleotide motifs distributed regularly throughout the entire molecule of CDR1as RNA that bind to 71 miRNAs through their seed sequence GGAAG. The sequential binding of miR-7 RNAs (71 molecules) brings both ends of CDR1as RNA (1 molecule) together and stimulate phosphodiester bond formation between nucleotides C1 and A1299 at the 5' and 3' end, respectively. The binding of miRNAs to CDR1as RNA results in the unique complex formation, which shows three specific structural domains: (i) two short helixes with an internal loop, (ii) the hinge, and (iii) the triple-helix. The proposed mechanism explains specific RNA circularization and its function as a miRNAs sponge. Furthermore, the existing wet experimental data on the interaction of CDR1as RNA with miR-7 fully supports our observation. Although miR-671 shows the same seed sequence as miR-7, it forms an almost perfect double helix with CDR1as RNA and induces the cleavage of CDR1as, but does not stimulate circularization. To check how common is the proposed mechanism among circular RNAs, we analyzed the most recent circAtlas database counting almost 1.1 million sequences. It turned out that there are a huge number of circRNAs, which showed miRNAs seed binding sequences distributed through the whole circRNA sequences and prove that circularization of linear transcript is miRNA dependent.Communicated by Ramaswamy H. Sarma.


Subject(s)
MicroRNAs , MicroRNAs/genetics , MicroRNAs/metabolism , RNA/genetics , RNA/metabolism , RNA, Circular/genetics
8.
BMC Bioinformatics ; 22(1): 504, 2021 Oct 16.
Article in English | MEDLINE | ID: mdl-34656080

ABSTRACT

BACKGROUND: The functions of RNA molecules are mainly determined by their secondary structures. These functions can also be predicted using bioinformatic tools that enable the alignment of multiple RNAs to determine functional domains and/or classify RNA molecules into RNA families. However, the existing multiple RNA alignment tools, which use structural information, are slow in aligning long molecules and/or a large number of molecules. Therefore, a more rapid tool for multiple RNA alignment may improve the classification of known RNAs and help to reveal the functions of newly discovered RNAs. RESULTS: Here, we introduce an extremely fast Python-based tool called RNAlign2D. It converts RNA sequences to pseudo-amino acid sequences, which incorporate structural information, and uses a customizable scoring matrix to align these RNA molecules via the multiple protein sequence alignment tool MUSCLE. CONCLUSIONS: RNAlign2D produces accurate RNA alignments in a very short time. The pseudo-amino acid substitution matrix approach utilized in RNAlign2D is applicable for virtually all protein aligners.


Subject(s)
RNA , Software , Algorithms , Amino Acid Substitution , Humans , Nucleic Acid Conformation , RNA/genetics , Sequence Alignment , Sequence Analysis, RNA
9.
Cancers (Basel) ; 13(1)2021 Jan 03.
Article in English | MEDLINE | ID: mdl-33401540

ABSTRACT

Until recently, post-transcriptional gene regulation (PTGR), in contrast to transcriptional regulation, was not extensively explored in cancer, even though it seems to be highly important. PUM proteins are well described in the PTGR of several organisms and contain the PUF RNA-binding domain that recognizes the UGUANAUA motif, located mostly in the 3' untranslated region (3'UTR) of target mRNAs. Depending on the protein cofactors recruited by PUM proteins, target mRNAs are directed towards translation, repression, activation, degradation, or specific localization. Abnormal profiles of PUM expression have been shown in several types of cancer, in some of them being different for PUM1 and PUM2. This review summarizes the dysregulation of PUM1 and PUM2 expression in several cancer tissues. It also describes the regulatory mechanisms behind the activity of PUMs, including cooperation with microRNA and non-coding RNA machineries, as well as the alternative polyadenylation pathway. It also emphasizes the importance of future studies to gain a more complete picture of the role of PUM proteins in different types of cancer. Such studies may result in identification of novel targets for future cancer therapies.

10.
Int J Mol Sci ; 21(21)2020 Nov 09.
Article in English | MEDLINE | ID: mdl-33182400

ABSTRACT

Androgen insensitivity syndrome (AIS), manifesting incomplete virilization in 46,XY individuals, is caused mostly by androgen receptor (AR) gene mutations. Therefore, a search for AR mutations is a routine approach in AIS diagnosis. However, some AIS patients lack AR mutations, which complicates the diagnosis. Here, we describe a patient suffering from partial androgen insensitivity syndrome (PAIS) and lacking AR mutations. The whole exome sequencing of the patient and his family members identified a heterozygous FKBP4 gene mutation, c.956T>C (p.Leu319Pro), inherited from the mother. The gene encodes FKBP prolyl isomerase 4, a positive regulator of the AR signaling pathway. This is the first report describing a FKBP4 gene mutation in association with a human disorder of sexual development (DSD). Importantly, the dysfunction of a homologous gene was previously reported in mice, resulting in a phenotype corresponding to PAIS. Moreover, the Leu319Pro amino acid substitution occurred in a highly conserved position of the FKBP4 region, responsible for interaction with other proteins that are crucial for the AR functional heterocomplex formation and therefore the substitution is predicted to cause the disease. We proposed the FKBP4 gene as a candidate AIS gene and suggest screening that gene for the molecular diagnosis of AIS patients lacking AR gene mutations.


Subject(s)
Androgen-Insensitivity Syndrome/genetics , Receptors, Androgen/genetics , Signal Transduction/genetics , Tacrolimus Binding Proteins/genetics , Amino Acid Sequence , Amino Acid Substitution/genetics , Child , Exome/genetics , Humans , Male , Mutation/genetics , Sexual Development/genetics
11.
Cells ; 9(4)2020 04 16.
Article in English | MEDLINE | ID: mdl-32316190

ABSTRACT

Mammalian Pumilio (PUM) proteins are sequence-specific, RNA-binding proteins (RBPs) with wide-ranging roles. They are involved in germ cell development, which has functional implications in development and fertility. Although human PUM1 and PUM2 are closely related to each other and recognize the same RNA binding motif, there is some evidence for functional diversity. To address that problem, first we used RIP-Seq and RNA-Seq approaches, and identified mRNA pools regulated by PUM1 and PUM2 proteins in the TCam-2 cell line, a human male germ cell model. Second, applying global mass spectrometry-based profiling, we identified distinct PUM1- and PUM2-interacting putative protein cofactors, most of them involved in RNA processing. Third, combinatorial analysis of RIP and RNA-Seq, mass spectrometry, and RNA motif enrichment analysis revealed that PUM1 and PUM2 form partially varied RNP-regulatory networks (RNA regulons), which indicate different roles in human reproduction and testicular tumorigenesis. Altogether, this work proposes that protein paralogues with very similar and evolutionary highly conserved functional domains may play divergent roles in the cell by combining with different sets of protein cofactors. Our findings highlight the versatility of PUM paralogue-based post-transcriptional regulation, offering insight into the mechanisms underlying their diverse biological roles and diseases resulting from their dysfunction.


Subject(s)
Gene Expression Regulation/genetics , Germ Cells/metabolism , Infertility, Male/metabolism , RNA-Binding Proteins/metabolism , 3' Untranslated Regions , Cell Line , Gene Knockdown Techniques , Gene Silencing , Humans , Male , Mass Spectrometry , RNA, Small Interfering , RNA-Seq , Regulon
12.
Int J Mol Sci ; 21(8)2020 Apr 24.
Article in English | MEDLINE | ID: mdl-32344590

ABSTRACT

While two mouse NANOS paralogues, NANOS2 and NANOS3, are crucial for maintenance of germ cells by suppression of apoptosis, the mouse NANOS1 paralogue does not seem to regulate these processes. Previously, we described a human NANOS1 p.[(Pro34Thr);(Ser83del)] mutation associated with the absence of germ cells in seminiferous tubules of infertile patients, which might suggest an anti-apoptotic role of human NANOS1. In this study, we aimed to determine a potential influence of human NANOS1 on the maintenance of TCam-2 model germ cells by investigating proliferation, cell cycle, and apoptosis. Constructs encoding wild-type or mutated human NANOS1 were used for transfection of TCam-2 cells, in order to investigate the effect of NANOS1 on cell proliferation, which was studied using a colorimetric assay, as well as apoptosis and the cell cycle, which were measured by flow cytometry. RNA-Seq (RNA sequencing) analysis followed by RT-qPCR (reverse transcription and quantitative polymerase chain reaction) was conducted for identifying pro-apoptotic genes repressed by NANOS1. Here, we show that overexpression of NANOS1 downregulates apoptosis in TCam-2 cells. Moreover, we found that NANOS1 represses a set of pro-apoptotic genes at the mRNA level. We also found that the infertility-associated p.[(Pro34Thr);(Ser83del)] mutation causes NANOS1 to functionally switch from being anti-apoptotic to pro-apoptotic in the human male germ cell line. Thus, this report is the first to show an anti-apoptotic role of NANOS1 exerted by negative regulation of mRNAs of pro-apoptotic genes.


Subject(s)
Apoptosis Regulatory Proteins/genetics , Apoptosis/genetics , Gene Expression Regulation , Germ Cells/metabolism , RNA-Binding Proteins/genetics , Alleles , Amino Acid Substitution , Cell Cycle/genetics , Cell Line , Cell Proliferation , Humans , Infertility/genetics , Male , Mutation , RNA-Binding Proteins/metabolism
13.
J Cell Sci ; 133(7)2020 04 06.
Article in English | MEDLINE | ID: mdl-32094263

ABSTRACT

Regulation of proliferation, apoptosis and cell cycle is crucial for the physiology of germ cells. Their malfunction contributes to infertility and germ cell tumours. The kinesin KIF18A is an important regulator of those processes in animal germ cells. Post-transcriptional regulation of KIF18A has not been extensively explored. Owing to the presence of PUM-binding elements (PBEs), KIF18A mRNA is a potential target of PUM proteins, where PUM refers to Pumilio proteins, RNA-binding proteins that act in post-transcriptional gene regulation. We conducted RNA co-immunoprecipitation combined with RT-qPCR, as well as luciferase reporter assays, by applying an appropriate luciferase construct encoding wild-type KIF18A 3'-UTR, upon PUM overexpression or knockdown in TCam-2 cells, representing human male germ cells. We found that KIF18A is repressed by PUM1 and PUM2. To study how this regulation influences KIF18A function, an MTS proliferation assay, and apoptosis and cell cycle analysis using flow cytometry, was performed upon KIF18A mRNA siRNA knockdown. KIF18A significantly influences proliferation, apoptosis and the cell cycle, with its effects being opposite to PUM effects. Repression by PUM proteins might represent one of mechanisms influencing KIF18A level in controlling proliferation, cell cycle and apoptosis in TCam-2 cells.


Subject(s)
Kinesins , RNA-Binding Proteins , Animals , Cell Cycle , Cell Line , Gene Expression Regulation , Humans , Kinesins/genetics , Kinesins/metabolism , Male , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism
14.
Nucleic Acids Res ; 48(D1): D256-D260, 2020 01 08.
Article in English | MEDLINE | ID: mdl-31624839

ABSTRACT

tRNAs have been widely studied for their role as genetic code decoders in the ribosome during translation, but have recently received new attention due to the discovery of novel roles beyond decoding, often in connection with human diseases. Yet, existing tRNA databases have not been updated for more than a decade, so they do not contain this new functional information and have not kept pace with the rate of discovery in this field. Therefore, a regularly updated database that contains information about newly discovered characteristics of tRNA molecules and can be regularly updated is strongly needed. Here, we report the creation of the T-psi-C database (http://tpsic.igcz.poznan.pl), an up-to-date collection of tRNA sequences that contains data obtained from high-throughput tRNA sequencing, e.g. all isoacceptors and isodecoders for human HEK293 cells. This database also contains 3D tRNA structures obtained from Protein Data Bank and generated using homology modeling. The T-psi-C database can be continuously updated by any member of the scientific community, and contains its own application programming interface (API), which allows users to retrieve or upload data in JSON format. Altogether, T-psi-C is user-friendly, easy to develop and an up-to-date source of knowledge about tRNAs.


Subject(s)
Databases, Nucleic Acid , RNA, Transfer/chemistry , HEK293 Cells , High-Throughput Nucleotide Sequencing , Humans , Nucleic Acid Conformation , Sequence Analysis, RNA , User-Computer Interface
15.
Cell Mol Life Sci ; 76(1): 147-161, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30269240

ABSTRACT

Pumilio (PUM) proteins are RNA-binding proteins that posttranscriptionally regulate gene expression in many organisms. Their PUF domain recognizes specific PUM-binding elements (PBE) in the 3' untranslated region of target mRNAs while engaging protein cofactors such as NANOS that repress the expression of target mRNAs through the recruitment of effector complexes. Although the general process whereby PUM recognizes individual mRNAs has been studied extensively, the particulars of the mechanism underlying PUM-NANOS cooperation in mRNA regulation and the functional overlap among PUM and NANOS paralogues in mammals have not been elucidated. Here, using the novel PUM1 and PUM2 mRNA target SIAH1 as a model, we show mechanistic differences between PUM1 and PUM2 and between NANOS1, 2, and 3 paralogues in the regulation of SIAH1. Specifically, unlike PUM2, PUM1 exhibited PBE-independent repression of SIAH1 3'UTR-dependent luciferase expression. Concordantly, the PUF domains of PUM1 and PUM2 showed different EMSA complex formation patterns with SIAH1 3'UTRs. Importantly, we show direct binding of NANOS3, but not NANOS2, to SIAH1 3'UTR, which did not require PBEs or the PUF domain. To the best of our knowledge, this is the first report, showing that an NANOS protein directly binds RNA. Finally, using NANOS1 and NANOS3 constructs carrying mutations identified in infertile patients, we show that these mutations disrupt repression of the SIAH1-luciferase reporter and that the central region in NANOS1 appears to contribute to the regulation of SIAH1. Our findings highlight the mechanistic versatility of the PUM/NANOS machinery in mammalian posttranscriptional regulation.


Subject(s)
Gene Expression Regulation , Nuclear Proteins/genetics , RNA-Binding Proteins/metabolism , Ubiquitin-Protein Ligases/genetics , 3' Untranslated Regions , Animals , Drosophila melanogaster , HEK293 Cells , Humans , Mutation , Nuclear Proteins/metabolism , Protein Binding , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA-Binding Proteins/genetics , Transcription, Genetic , Ubiquitin-Protein Ligases/metabolism
16.
Nucleic Acids Res ; 47(2): 570-581, 2019 01 25.
Article in English | MEDLINE | ID: mdl-30517751

ABSTRACT

RNA-binding proteins (RBPs) control and coordinate each stage in the life cycle of RNAs. Although in vivo binding sites of RBPs can now be determined genome-wide, most studies typically focused on individual RBPs. Here, we examined a large compendium of 114 high-quality transcriptome-wide in vivo RBP-RNA cross-linking interaction datasets generated by the same protocol in the same cell line and representing 64 distinct RBPs. Comparative analysis of categories of target RNA binding preference, sequence preference, and transcript region specificity was performed, and identified potential posttranscriptional regulatory modules, i.e. specific combinations of RBPs that bind to specific sets of RNAs and targeted regions. These regulatory modules represented functionally related proteins and exhibited distinct differences in RNA metabolism, expression variance, as well as subcellular localization. This integrative investigation of experimental RBP-RNA interaction evidence and RBP regulatory function in a human cell line will be a valuable resource for understanding the complexity of post-transcriptional regulation.


Subject(s)
Gene Expression Regulation , RNA/metabolism , Ribonucleoproteins/metabolism , Base Sequence , Binding Sites , HEK293 Cells , Humans , RNA/chemistry , Ribonucleoproteins/classification
17.
Oncotarget ; 9(65): 32466-32477, 2018 Aug 21.
Article in English | MEDLINE | ID: mdl-30197756

ABSTRACT

SPIN1 is necessary for normal meiotic progression in mammals. It is overexpressed in human ovarian cancers and some cancer cell lines. Here, we examined the functional significance and regulation of SPIN1 and SPIN3 in the TCam-2 human seminoma cell line. We found that while SPIN1 overexpression reduced apoptosis in these cells, SPIN3 overexpression induced it. Similarly, SPIN1 upregulated and SPIN3 downregulated CYCD1, which is a downstream target of the PI3K/AKT pathway and contributes to apoptosis resistance in cancer cell lines. It appears that SPIN1 is pro-oncogenic and SPIN3 acts as a tumor suppressor in TCam-2 cells. To our knowledge, this is the first report of SPIN3 tumor suppressor activity. However, both SPIN1 and SPIN3 stimulated cell cycle progression. In addition, using luciferase reporters carrying SPIN1 or SPIN3 mRNA 3'UTRs, we found that PUM1 and PUM2 targeted and repressed SPINs. We also found that PUM1 itself strongly stimulated apoptosis and moderately slowed cell cycle progression in TCam-2 cells, suggesting that PUM1, like SPIN3, is a tumor suppressor. Our findings suggest that acting, at least in part, through SPIN1 and SPIN3, PUM proteins contribute to a mechanism promoting normal human male germ cell apoptotic status and thus preventing cancer.

18.
Methods Mol Biol ; 1720: 55-75, 2018.
Article in English | MEDLINE | ID: mdl-29236251

ABSTRACT

RNA-binding proteins (RBPs) establish posttranscriptional gene regulation (PTGR) by coordinating the maturation, editing, transport, stability, and translation of cellular RNAs. A variety of experimental approaches have been developed to characterize the RNAs associated with RBPs in vitro as well as in vivo. Our laboratory developed Photoactivatable-Ribonucleoside-Enhanced Cross-Linking and Immunoprecipitation (PAR-CLIP), which in combination with next-generation sequencing enables the identification of RNA targets of RBPs at a nucleotide-level resolution. Here we present an updated and condensed step-by-step PAR-CLIP protocol followed by the description of our RNA-seq data analysis pipeline.


Subject(s)
High-Throughput Nucleotide Sequencing/methods , Immunoprecipitation/methods , RNA-Binding Proteins/metabolism , RNA/metabolism , Sequence Analysis, RNA/methods , Animals , Binding Sites , Computational Biology/methods , Cross-Linking Reagents , Humans , Nucleotides/chemistry , Protein Binding , RNA/chemistry , RNA/isolation & purification , RNA-Binding Proteins/chemistry , Ribonucleosides/chemistry , Staining and Labeling/methods , Ultraviolet Rays
19.
Methods ; 118-119: 24-40, 2017 04 15.
Article in English | MEDLINE | ID: mdl-27765618

ABSTRACT

Photoactivatable-Ribonucleoside-Enhanced Crosslinking and Immunoprecipitation (PAR-CLIP) in combination with next-generation sequencing is a powerful method for identifying endogenous targets of RNA-binding proteins (RBPs). Depending on the characteristics of each RBP, key steps in the PAR-CLIP procedure must be optimized. Here we present a comprehensive step-by-step PAR-CLIP protocol with detailed explanations of the critical steps. Furthermore, we report the application of a new PAR-CLIP data analysis pipeline to three distinct RBPs targeting different annotation categories of cellular RNAs.


Subject(s)
High-Throughput Nucleotide Sequencing/methods , Immunoprecipitation/methods , RNA-Binding Proteins/genetics , RNA/chemistry , Sequence Analysis, RNA/methods , Thiouridine/metabolism , Antibodies/chemistry , Base Sequence , Binding Sites , Cell Line, Tumor , Fragile X Mental Retardation Protein/genetics , Fragile X Mental Retardation Protein/metabolism , Gene Library , HEK293 Cells , Humans , Nucleic Acid Conformation , Phosphoproteins/genetics , Phosphoproteins/metabolism , Phosphorus Radioisotopes , Protein Binding , RNA/genetics , RNA/metabolism , RNA-Binding Protein FUS/genetics , RNA-Binding Protein FUS/metabolism , RNA-Binding Proteins/metabolism , Ribonucleases/chemistry , Sequence Alignment , Thiouridine/chemistry , Ultraviolet Rays
20.
J Med Genet ; 50(3): 187-93, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23315541

ABSTRACT

BACKGROUND: The Nanos gene is a key translational regulator of specific mRNAs involved in Drosophila germ cell development. Disruption of mammalian homologues, Nanos2 or Nanos3, causes male infertility in mice. In humans, however, no evidence of NANOS2 or NANOS3 mutations causing male infertility has been reported. Although Nanos1 seems dispensable for mouse reproduction, we sought to analyse for the first time its homologue in infertile men. METHODS: A group of 195 patients manifesting non-obstructive azoospermia or oligozoospermia were tested for mutations of the NANOS1 gene, using single-strand conformation polymorphism and DNA sequencing. RESULTS: Three types of NANOS1 gene mutations were identified in five patients and were absent in 800 chromosomes of fertile men. Pedigree analysis indicated a dominant inheritance pattern with penetration limited to males. Two mutations caused deletions of single amino acids, p.Pro77_Ser78delinsPro and p.Ala173del, each of them identified in two unrelated patients. Both types of deletions were located in the NANOS1 N-terminus (responsible for protein interactions) and were associated with a lack of germ cells in testes. Interestingly, the Pro77_Ser78delinsPro mutation altered interaction of NANOS1 with a microRNA biogenesis factor, GEMIN3. The third identified mutation, p.[(Arg246His; Arg276Tyr)], found in the C-terminal RNA-binding domain, was present in a single oligo-astheno-teratozoospermic man. We bioinformatically demonstrated that the p.Arg246His substitution causes a decrease in the positive charge of this domain, potentially altering RNA-binding. CONCLUSIONS: This is the first report describing the association of NANOS1 gene mutations with human infertility. Two different infertility phenotypes may reflect distinct functions of N-terminal versus C-terminal regions of NANOS1.


Subject(s)
Azoospermia/genetics , Mutation , Oligospermia/genetics , RNA-Binding Proteins/physiology , Testis/pathology , Amino Acid Sequence , Animals , Azoospermia/pathology , Humans , Male , Mice , Models, Molecular , Molecular Sequence Annotation , Molecular Sequence Data , Oligospermia/pathology , Pedigree , Phylogeny , Polymorphism, Single-Stranded Conformational , RNA-Binding Proteins/chemistry , RNA-Binding Proteins/genetics , Sequence Analysis, DNA , Testis/cytology
SELECTION OF CITATIONS
SEARCH DETAIL
...