Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Chemosphere ; 282: 130898, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34098310

ABSTRACT

Semiconducting membranes integrated with nanomaterials have placed themselves in new emerging researches tremendously for seawater desalination, oil-water separation, disinfection, removal of inorganic as well as organic pollutants. Howbeit, only nanoparticles unified membranes show quite a lot lags in their performance, although some of these particles associated with the demerits of high cost. In contrast, graphitic carbon nitride incorporated membranes offered improved aforementioned properties corresponding to absolute essential qualities such as cost-effective, environmentally friendly, easy-to-operate, green manufacturing, anti-fouling, and low energy consumption. Moreover, their high mechanical strength, high stability against harsh environment and long-term utilization without flux reduction are strong plus. Even though there are some undeniable downsides of these membranes in real world applications as bulk synthesis, consistent dispersion of graphitic carbon nitride, low photocatalytic efficiency etc. Accordingly, in the present article, these frailties of the membranes having graphitic carbon nitride as a filler and their respective synthesis procedures and properties are discussed. A comprehensive analysis over the application of semiconducting graphitic carbon nitride incorporated membranes with and without special surface modification; and exploration of the future challenges and difficulties associated to these membranes are also reviewed. Consequently, the current article provides brief overview about graphitic carbon nitride integrated composite membranes as well as their applications, and it finished up with new thoughts of further improvements/modifications to overcome their shortcomings in actual environmental conditions.


Subject(s)
Graphite , Water , Catalysis , Nitrogen Compounds
2.
Adv Colloid Interface Sci ; 285: 102276, 2020 Nov.
Article in English | MEDLINE | ID: mdl-33039840

ABSTRACT

Over the past few years, oil-water separation techniques have been widely researched due to influences of oil pollution. The oil pollution is significantly increasing day-by-day because of ever-increasing usage of oil in daily routine of humans and industrial activities. The separation of water from oil-water emulsions/mixtures through membrane technology has provided absolute necessary qualities such as low cost, eco-friendly, easy-operation and energy efficient. To build up the filter membranes with special super-wettability properties and bearing excellent multifunctional applications is highly attractive research area in current decade. However, evolution of membrane technology suffered many deficiencies including severe fouling, short-standing against high flow speed, surface wettability disorders, non-reusable and limited application. In this review article, we outline the recent advances in membrane technology with respect to special super-wettability properties, enhanced characteristics for purpose to serve oil-water separation, and more specifically its multifunctional applications. Therefore, this study is made for membranes having other than applications, in addition to oil-water separation. Further, the wetting phenomenon of these multifunctional membranes is addressed and highlighted the brief overview of surface wetting types including Superhydrophobic-Superoleophilic membranes, Superhydrophilic-Superoleophobic membranes, and Superhydrophilic-underwater Superoleophobic membranes. Moreover, relative fabrication procedures and multifunctional applications of developed multifunctional super-wetting membranes are also discussed along with wetting behavior. Finally, the current developments and achievements for oil-water separation multifunctional super-wetting membranes are concluded. Besides, it also explores the future challenges and obstacles associated to these membranes. Hence, this article provides brief overview of advancement of oil-water separation based multifunctional super-wetting membranes and ended with new thoughts of further modification/enhancement.

SELECTION OF CITATIONS
SEARCH DETAIL
...