Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 23(23)2023 Nov 30.
Article in English | MEDLINE | ID: mdl-38067888

ABSTRACT

The primary objective of this study is to develop an advanced, automated system for the early detection and classification of leaf diseases in potato plants, which are among the most cultivated vegetable crops worldwide. These diseases, notably early and late blight caused by Alternaria solani and Phytophthora infestans, significantly impact the quantity and quality of global potato production. We hypothesize that the integration of Vision Transformer (ViT) and ResNet-50 architectures in a new model, named EfficientRMT-Net, can effectively and accurately identify various potato leaf diseases. This approach aims to overcome the limitations of traditional methods, which are often labor-intensive, time-consuming, and prone to inaccuracies due to the unpredictability of disease presentation. EfficientRMT-Net leverages the CNN model for distinct feature extraction and employs depth-wise convolution (DWC) to reduce computational demands. A stage block structure is also incorporated to improve scalability and sensitive area detection, enhancing transferability across different datasets. The classification tasks are performed using a global average pooling layer and a fully connected layer. The model was trained, validated, and tested on custom datasets specifically curated for potato leaf disease detection. EfficientRMT-Net's performance was compared with other deep learning and transfer learning techniques to establish its efficacy. Preliminary results show that EfficientRMT-Net achieves an accuracy of 97.65% on a general image dataset and 99.12% on a specialized Potato leaf image dataset, outperforming existing methods. The model demonstrates a high level of proficiency in correctly classifying and identifying potato leaf diseases, even in cases of distorted samples. The EfficientRMT-Net model provides an efficient and accurate solution for classifying potato plant leaf diseases, potentially enabling farmers to enhance crop yield while optimizing resource utilization. This study confirms our hypothesis, showcasing the effectiveness of combining ViT and ResNet-50 architectures in addressing complex agricultural challenges.


Subject(s)
Solanum tuberosum , Agriculture , Crops, Agricultural , Culture , Plant Diseases , Plant Leaves
2.
Nat Prod Res ; : 1-10, 2023 Oct 05.
Article in English | MEDLINE | ID: mdl-37798247

ABSTRACT

Carrot (Daucus carota L.) is a nutrient-rich vegetable that is widely cultivated and consumed in Pakistan in both raw and processed form. Data on the proximate composition and natural occurrence of aflatoxins (AFs) in carrots and marketed carrot products is lacking in Pakistan and the risk exposure of AF has not been characterised before. Thus, the current study was designed to know the frequently consumed carrot products with per capita consumption, and risk assessment of AF through these products in various regions of South Punjab Pakistan. A survey was conducted with 125 respondents and appeared that raw carrot, fresh carrot juice, gajrella and pickle are the most frequently consumed marketed carrot products with per capita consumption i.e. 62.5, 46.6, 16.2 and 14.5 gday-1, respectively. Proximate analysis revealed that carrot root and processed carrot products contained 9.65-98.2% moisture, 0.23-0.60% ash, 6.2-14.1% carbohydrates, 0.31-0.80% protein, 0.40-3.7% fat and 1.4-4.20% fibre. AF analysis revealed that 36.67% of samples were contaminated with TAF. Thirty-five (35%) percent of samples were tainted with aflatoxin B1, and 13.33% of samples were contaminated with aflatoxin B2. All the samples of carrot root, fresh carrot juice and gajrella contained TAF levels less than the maximum limit (ML) (2 ppb) assigned by the European Union (EU). However, the entire AFB1 positive samples of carrot pickle contained AFB1 levels of more than 2 ppb exceeding the ML. Furthermore, daily dietary exposure of TAFs ranged from 0.11 to 1.27 ng/kg of body weight per day which relatively exceeds the permissible limit of 1 ng/kg of body weight per day as defined by the Joint FAO/WHO Expert Committee on Food Additives. This is the first prevalence and risk assessment report of AF in marketed processed carrot products in Pakistan. These baseline data are an initial step in the effort to deal with this significant food safety issue and the establishment of legislation for AF in marketed products is needed in Pakistan.

3.
Diagnostics (Basel) ; 13(20)2023 Oct 12.
Article in English | MEDLINE | ID: mdl-37892016

ABSTRACT

The lungs are critical components of the respiratory system because they allow for the exchange of oxygen and carbon dioxide within our bodies. However, a variety of conditions can affect the lungs, resulting in serious health consequences. Lung disease treatment aims to control its severity, which is usually irrevocable. The fundamental objective of this endeavor is to build a consistent and automated approach for establishing the intensity of lung illness. This paper describes MixNet-LD, a unique automated approach aimed at identifying and categorizing the severity of lung illnesses using an upgraded pre-trained MixNet model. One of the first steps in developing the MixNet-LD system was to build a pre-processing strategy that uses Grad-Cam to decrease noise, highlight irregularities, and eventually improve the classification performance of lung illnesses. Data augmentation strategies were used to rectify the dataset's unbalanced distribution of classes and prevent overfitting. Furthermore, dense blocks were used to improve classification outcomes across the four severity categories of lung disorders. In practice, the MixNet-LD model achieves cutting-edge performance while maintaining model size and manageable complexity. The proposed approach was tested using a variety of datasets gathered from credible internet sources as well as a novel private dataset known as Pak-Lungs. A pre-trained model was used on the dataset to obtain important characteristics from lung disease images. The pictures were then categorized into categories such as normal, COVID-19, pneumonia, tuberculosis, and lung cancer using a linear layer of the SVM classifier with a linear activation function. The MixNet-LD system underwent testing in four distinct tests and achieved a remarkable accuracy of 98.5% on the difficult lung disease dataset. The acquired findings and comparisons demonstrate the MixNet-LD system's improved performance and learning capabilities. These findings show that the proposed approach may effectively increase the accuracy of classification models in medicinal image investigations. This research helps to develop new strategies for effective medical image processing in clinical settings.

4.
Diagnostics (Basel) ; 13(20)2023 Oct 17.
Article in English | MEDLINE | ID: mdl-37892058

ABSTRACT

Hypertensive retinopathy (HR) and diabetic retinopathy (DR) are retinal diseases closely associated with high blood pressure. The severity and duration of hypertension directly impact the prevalence of HR. The early identification and assessment of HR are crucial to preventing blindness. Currently, limited computer-aided methods are available for detecting HR and DR. These existing systems rely on traditional machine learning approaches, which require complex image processing techniques and are often limited in their application. To address this challenge, this work introduces a deep learning (DL) method called HDR-EfficientNet, which aims to provide an efficient and accurate approach to identifying various eye-related disorders, including diabetes and hypertensive retinopathy. The proposed method utilizes an EfficientNet-V2 network for end-to-end training focused on disease classification. Additionally, a spatial-channel attention method is incorporated into the approach to enhance its ability to identify specific areas of damage and differentiate between different illnesses. The HDR-EfficientNet model is developed using transfer learning, which helps overcome the challenge of imbalanced sample classes and improves the network's generalization. Dense layers are added to the model structure to enhance the feature selection capacity. The performance of the implemented system is evaluated using a large dataset of over 36,000 augmented retinal fundus images. The results demonstrate promising accuracy, with an average area under the curve (AUC) of 0.98, a specificity (SP) of 96%, an accuracy (ACC) of 98%, and a sensitivity (SE) of 95%. These findings indicate the effectiveness of the suggested HDR-EfficientNet classifier in diagnosing HR and DR. In summary, the HDR-EfficientNet method presents a DL-based approach that offers improved accuracy and efficiency for the detection and classification of HR and DR, providing valuable support in diagnosing and managing these eye-related conditions.

5.
Diagnostics (Basel) ; 13(19)2023 Oct 03.
Article in English | MEDLINE | ID: mdl-37835859

ABSTRACT

A well-known eye disorder called diabetic retinopathy (DR) is linked to elevated blood glucose levels. Cotton wool spots, confined veins in the cranial nerve, AV nicking, and hemorrhages in the optic disc are some of its symptoms, which often appear later. Serious side effects of DR might include vision loss, damage to the visual nerves, and obstruction of the retinal arteries. Researchers have devised an automated method utilizing AI and deep learning models to enable the early diagnosis of this illness. This research gathered digital fundus images from renowned Pakistani eye hospitals to generate a new "DR-Insight" dataset and known online sources. A novel methodology named the residual-dense system (RDS-DR) was then devised to assess diabetic retinopathy. To develop this model, we have integrated residual and dense blocks, along with a transition layer, into a deep neural network. The RDS-DR system is trained on the collected dataset of 9860 fundus images. The RDS-DR categorization method demonstrated an impressive accuracy of 97.5% on this dataset. These findings show that the model produces beneficial outcomes and may be used by healthcare practitioners as a diagnostic tool. It is important to emphasize that the system's goal is to augment optometrists' expertise rather than replace it. In terms of accuracy, the RDS-DR technique fared better than the cutting-edge models VGG19, VGG16, Inception V-3, and Xception. This emphasizes how successful the suggested method is for classifying diabetic retinopathy (DR).

6.
Diagnostics (Basel) ; 13(16)2023 Aug 10.
Article in English | MEDLINE | ID: mdl-37627904

ABSTRACT

Diabetes is a widely spread disease that significantly affects people's lives. The leading cause is uncontrolled levels of blood glucose, which develop eye defects over time, including Diabetic Retinopathy (DR), which results in severe visual loss. The primary factor causing blindness is considered to be DR in diabetic patients. DR treatment tries to control the disease's severity, as it is irreversible. The primary goal of this effort is to create a reliable method for automatically detecting the severity of DR. This paper proposes a new automated system (DR-NASNet) to detect and classify DR severity using an improved pretrained NASNet Model. To develop the DR-NASNet system, we first utilized a preprocessing technique that takes advantage of Ben Graham and CLAHE to lessen noise, emphasize lesions, and ultimately improve DR classification performance. Taking into account the imbalance between classes in the dataset, data augmentation procedures were conducted to control overfitting. Next, we have integrated dense blocks into the NASNet architecture to improve the effectiveness of classification results for five severity levels of DR. In practice, the DR-NASNet model achieves state-of-the-art results with a smaller model size and lower complexity. To test the performance of the DR-NASNet system, a combination of various datasets is used in this paper. To learn effective features from DR images, we used a pretrained model on the dataset. The last step is to put the image into one of five categories: No DR, Mild, Moderate, Proliferate, or Severe. To carry this out, the classifier layer of a linear SVM with a linear activation function must be added. The DR-NASNet system was tested using six different experiments. The system achieves 96.05% accuracy with the challenging DR dataset. The results and comparisons demonstrate that the DR-NASNet system improves a model's performance and learning ability. As a result, the DR-NASNet system provides assistance to ophthalmologists by describing an effective system for classifying early-stage levels of DR.

7.
Diagnostics (Basel) ; 13(8)2023 Apr 17.
Article in English | MEDLINE | ID: mdl-37189539

ABSTRACT

Hypertensive retinopathy (HR) is a serious eye disease that causes the retinal arteries to change. This change is mainly due to the fact of high blood pressure. Cotton wool patches, bleeding in the retina, and retinal artery constriction are affected lesions of HR symptoms. An ophthalmologist often makes the diagnosis of eye-related diseases by analyzing fundus images to identify the stages and symptoms of HR. The likelihood of vision loss can significantly decrease the initial detection of HR. In the past, a few computer-aided diagnostics (CADx) systems were developed to automatically detect HR eye-related diseases using machine learning (ML) and deep learning (DL) techniques. Compared to ML methods, the CADx systems use DL techniques that require the setting of hyperparameters, domain expert knowledge, a huge training dataset, and a high learning rate. Those CADx systems have shown to be good for automating the extraction of complex features, but they cause problems with class imbalance and overfitting. By ignoring the issues of a small dataset of HR, a high level of computational complexity, and the lack of lightweight feature descriptors, state-of-the-art efforts depend on performance enhancement. In this study, a pretrained transfer learning (TL)-based MobileNet architecture is developed by integrating dense blocks to optimize the network for the diagnosis of HR eye-related disease. We developed a lightweight HR-related eye disease diagnosis system, known as Mobile-HR, by integrating a pretrained model and dense blocks. To increase the size of the training and test datasets, we applied a data augmentation technique. The outcomes of the experiments show that the suggested approach was outperformed in many cases. This Mobile-HR system achieved an accuracy of 99% and an F1 score of 0.99 on different datasets. The results were verified by an expert ophthalmologist. These results indicate that the Mobile-HR CADx model produces positive outcomes and outperforms state-of-the-art HR systems in terms of accuracy.

SELECTION OF CITATIONS
SEARCH DETAIL
...