Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 13(1): 8151, 2023 May 19.
Article in English | MEDLINE | ID: mdl-37208531

ABSTRACT

Quantifying landslide volumes in earthquake affected areas is critical to understand the orogenic processes and their surface effects at different spatio-temporal scales. Here, we build an accurate scaling relationship to estimate the volume of shallow soil landslides based on 1 m pre- and post-event LiDAR elevation models. On compiling an inventory of 1719 landslides for 2018 Mw 6.6 Hokkaido-Iburi earthquake epicentral region, we find that the volume of soil landslides can be estimated by γ = 1.15. The total volume of eroded debris from Hokkaido-Iburi catchments based on this new scaling relationship is estimated as 64-72 million m3. Based on the GNSS data approximation, we noticed that the co-seismic uplift volume is smaller than the eroded volume, suggesting that frequent large earthquakes (and rainfall extremes) may be counterbalancing the topographic uplift through erosion by landslides, especially in humid landscapes such as Japan, where soil properties are rather weak.

2.
Stoch Environ Res Risk Assess ; 37(2): 527-556, 2023.
Article in English | MEDLINE | ID: mdl-35880038

ABSTRACT

Flooding is one of the most destructive natural catastrophes that can strike anywhere in the world. With the recent, but frequent catastrophic flood events that occurred in the narrow stretch of land in southern India, sandwiched between the Western Ghats and the Arabian Sea, this study was initiated. The goal of this research is to identify flood-vulnerable zones in this area by making the local self governing bodies as the mapping unit. This study also assessed the predictive accuracy of analytical hierarchy process (AHP) and fuzzy-analytical hierarchy process (F-AHP) models. A total of 20 indicators (nine physical-environmental variables and 11 socio-economic variables) have been considered for the vulnerability modelling. Flood-vulnerability maps, created using remotely sensed satellite data and geographic information systems, was divided into five zones. AHP and F-AHP flood vulnerability models identified 12.29% and 11.81% of the area as very high-vulnerable zones, respectively. The receiver operating characteristic (ROC) curve is used to validate these flood vulnerability maps. The flood vulnerable maps, created using the AHP and F-AHP methods, were found to be outstanding based on the area under the ROC curve (AUC) values. This demonstrates the effectiveness of these two models. The results of AUC for the AHP and F-AHP models were 0.946 and 0.943, respectively, articulating that the AHP model is more efficient than its chosen counterpart in demarcating the flood vulnerable zones. Decision-makers and land-use planners will find the generated vulnerable zone maps useful, particularly in implementing flood mitigation plans.

3.
Sci Total Environ ; 807(Pt 2): 150842, 2022 Feb 10.
Article in English | MEDLINE | ID: mdl-34627899

ABSTRACT

Furious floods have become an omnipresent reality with the dawn of climate change and its transition to adulthood. Since climate change has now become an accepted reality, analysing the factors that favour or disfavour floods are an urgent requirement. Here we showcase the role of paleochannels, a product of migrating rivers, in a catastrophic flood in the south-western part of the Indian Peninsula. This study exposes whether these geomorphic features facilitate or impede floods. For the purpose of extracting paleochannels and floodwater mapping, we utilized multiple satellite datasets and took advantage of diversified feature selection algorithms. Paleochannels were demarcated viz., initial identification of a few paleochannels from literature and confirmation through high-resolution Google Earth (GE) images, followed by Principal Component Analysis (PCA) of Sentinel-2 images using Google Earth Engine (GEE), and a supervised classification of the principal bands 1, 2, and 3. False-positives were eliminated using Object-Oriented Analysis (OOA), which reduced the 964,254 polygons to 23,254. These polygons were visually affirmed using GE images that resulted in 115 paleochannels as the final collection. A few locations were verified through Vertical Electrical Sounding (VES) using the Schlumberger method. The features were analysed with the floodwaters of the 2018 catastrophic flood, extracted from Synthetic Aperture Radar (SAR) data, which was delineated for different temporal limits including the day of peak flood of August 17, 2018. During the peak flood, the inundation of the study area extended to 534.86 km2 with all the paleochannels getting immersed in floodwater. After 44 days of peak flood, the post-flood analysis revealed that when the floodwater receded 50%, the paleochannels emptied 87.39%, with the midland paleochannels discharging more than those of lowlands. Thus, such geomorphic features can be flood hotspots, but can be considered for discharging floodwater to mitigate flood risk in case of unprecedented rain.


Subject(s)
Floods , Rivers , Climate Change , Radar , Rain
4.
Article in English | MEDLINE | ID: mdl-27285473

ABSTRACT

Coastal cliffs fringing the Arabian Sea near Varkala exhibits the Warkalli Formation of the Tertiary sequence of Kerala, South India, with well-marked occurrence of jarosite associated with other hydrous mineral phases of phyllosilicate family in a palaeo-lacustrine depositional environment. Sandy phyllosilicates dominate the mineral assemblage, but jarosite occurs as a prominent secondary phase formed during acid-sulphate alteration of iron sulphide in this area. Here, we discuss about the potentiality of spectroscopic techniques to identify the possible mineral phases in the collected samples. The samples from the coastal cliffs have been characterized by hyperspectral analysis (VIS-NIR-SWIR), X-ray Diffraction (XRD), Fourier Transform Infra-red Reflectance (FTIR), Electron Probe Microanalysis (EPMA) and Laser Raman spectroscopy. The spectral and chemical analyses have confirmed the jarosite as natrojarosite and phyllosilicate as kaolinite. Other accessory phases have also been identified through XRD. FTIR spectroscopy has played a major role in identifying the major hydrous bonds between the minerals. VIS-NIR-SWIR spectra show several optimum spectral features at 910nm, 1470nm, 1849-1864nm (in the form of a doublet), 1940nm and 2270nm, which could be utilised to locate jarosite in the remotely-sensed data. X-ray diffraction peaks helped in the identification of maximum number of minerals (kaolinite, smectite, quartz, feldspar, pyrite, marcasite and hematite) and the variation in jarosite content in the samples. We propose the formation of jarosite in the region by a seasonal, local and temporary development of acidic conditions. Abundance of organic matter in a fluvio-lacustrine environment has developed anaerobic conditions by removing available oxygen through decomposition of organic matter containing sulphur compounds. The sulphur thus liberated combines with hydrogen from water to develop acidic conditions and resulted in the formation of jarosite. The occurrence of jarosite in Warkalli Formation suggests on and off supply of water during diagenesis. Jarosite has been detected as a prominent deposit in several regions on Mars by Mars Exploration rover Opportunity and Mars Reconnaissance Orbiter-Compact Reconnaissance Imaging Spectrometer for Mars (CRISM). This study of jarosite formation in terrestrial environment will influence our understanding on the mineral precipitation, diagenesis and hydration processes on Mars. Additionally, it also shows the importance of spectroscopic techniques like Raman spectrometry to be used in future missions to Mars to further validate the results of orbital spectroscopy.

SELECTION OF CITATIONS
SEARCH DETAIL
...