Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 70
Filter
1.
Cureus ; 16(5): e59659, 2024 May.
Article in English | MEDLINE | ID: mdl-38836160

ABSTRACT

Background Acute decompensated heart failure (ADHF) significantly contributes to global morbidity. Stress hyperglycemia (SHGL), although commonly observed in non-diabetic ADHF patients, remains underexplored. This study investigates the predictive value of SHGL for major adverse cardiac events (MACEs) and its impact on coronary intervention outcomes. Methods In this prospective observational study at a tertiary care center, 650 non-diabetic ADHF patients admitted for coronary intervention between April 2021 and April 2022 were assessed. SHGL was defined by random blood sugar levels >140 mg/dl. We monitored the incidence of MACEs, including cardiac death, non-fatal myocardial infarction, and heart failure rehospitalization, alongside the success rates of coronary revascularizations over 12 months. Results SHGL was present in 54% of patients (n=352) and was significantly associated with increased MACEs (p<0.001), higher rehospitalization rates (p<0.01), and lower success in revascularization (p<0.05). Using logistic regression, SHGL, age >65, and prior heart failure hospitalization were identified as independent predictors of MACEs. Statistical analyses were performed using two-tailed Mann-Whitney U tests, with significance levels set at p<0.05 for noteworthy findings and p<0.01 or p<0.001 for highly significant findings. Conclusions SHGL significantly impacts coronary intervention outcomes and the future prognosis of heart failure in non-diabetic ADHF patients, identifying it as a critical, modifiable risk factor. These findings advocate integrating SHGL management into ADHF care, emphasizing the need for further research to develop standardized treatment protocols. Proper management of SHGL could potentially improve patient outcomes, highlighting the importance of metabolic control in heart failure management.

2.
Curr Microbiol ; 81(6): 161, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38700667

ABSTRACT

In the wake of rapid industrialization and burgeoning transportation networks, the escalating demand for fossil fuels has accelerated the depletion of finite energy reservoirs, necessitating urgent exploration of sustainable alternatives. To address this, current research is focusing on renewable fuels like second-generation bioethanol from agricultural waste such as sugarcane bagasse. This approach not only circumvents the contentious issue of food-fuel conflicts associated with biofuels but also tackles agricultural waste management. In the present study indigenous yeast strain, Clavispora lusitaniae QG1 (MN592676), was isolated from rotten grapes to ferment xylose sugars present in the hemicellulose content of sugarcane bagasse. To liberate the xylose sugars, dilute acid pretreatment was performed. The highest reducing sugars yield was 1.2% obtained at a temperature of 121 °C for 15 min, a solid-to-liquid ratio of 1:25 (% w/v), and an acid concentration of 1% dilute acid H2SO4 that was significantly higher (P < 0.001) yield obtained under similar conditions at 100 °C for 1 h. The isolated strain was statistically optimized for fermentation process by Plackett-Burman design to achieve the highest ethanol yield. Liberated xylose sugars were completely utilized by Clavispora lusitaniae QG1 (MN592676) and gave 100% ethanol yield. This study optimizes both fermentation process and pretreatment of sugarcane bagasse to maximize bioethanol yield and demonstrates the ability of isolated strain to effectively utilize xylose as a carbon source. The desirable characteristics depicted by strain Clavispora lusitaniae shows its promising utilization in management of industrial waste like sugarcane bagasse by its conversion into renewable biofuels like bioethanol.


Subject(s)
Biofuels , Cellulose , Ethanol , Fermentation , Saccharum , Saccharum/metabolism , Ethanol/metabolism , Cellulose/metabolism , Waste Management/methods , Agriculture , Xylose/metabolism , Vitis/microbiology , Hypocreales/metabolism
3.
Sci Total Environ ; 932: 172829, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38692332

ABSTRACT

Permafrost serves as a natural cold reservoir for viral communities. However, little is known about the viromes in deep permafrost soil, as most studies of permafrost were restricted to shallow areas. Here, permafrost soil samples of up to 100 m in depth were collected from two sites in the Tuotuo River permafrost area on the Tibetan Plateau. We investigated the viral composition in these permafrost soil samples and analyzed the relationship of viral composition and diversity along with depths. Our study revealed that greater permafrost thickness corresponds to higher diversity within the viral community. Bacteriophages were found to be the dominant viral communities, with "kill the winner" dynamics observed within the Siphoviridae and Myoviridae. The abundance and diversity of viral communities may follow a potential pattern along soil layers and depths, influenced by pH, trace elements, and permafrost thickness. Notably, strong correlations were discovered between the content of inorganic elements, including B, Mg, Cr, Bi, Ti, Na, Ni, and Cu, and the viral composition. Moreover, we discovered highly conserved sequences of giant viruses at depth of 10, 20, and 50 m in permafrost, which play a crucial role in evolutionary processes. These findings provide valuable insights into the viral community patterns from shallow to 100-m-depth in high-elevation permafrost, offering crucial data support for the formulation of strategies for permafrost thaw caused by climate change and anthropogenic activities.


Subject(s)
Permafrost , Tibet , Soil Microbiology , Virome , Altitude , Environmental Monitoring , Soil/chemistry , Viruses
4.
PLoS One ; 19(5): e0303048, 2024.
Article in English | MEDLINE | ID: mdl-38753867

ABSTRACT

Shigella dysenteriae, is a Gram-negative bacterium that emerged as the second most significant cause of bacillary dysentery. Antibiotic treatment is vital in lowering Shigella infection rates, yet the growing global resistance to broad-spectrum antibiotics poses a significant challenge. The persistent multidrug resistance of S. dysenteriae complicates its management and control. Hence, there is an urgent requirement to discover novel therapeutic targets and potent medications to prevent and treat this disease. Therefore, the integration of bioinformatics methods such as subtractive and comparative analysis provides a pathway to compute the pan-genome of S. dysenteriae. In our study, we analysed a dataset comprising 27 whole genomes. The S. dysenteriae strain SD197 was used as the reference for determining the core genome. Initially, our focus was directed towards the identification of the proteome of the core genome. Moreover, several filters were applied to the core genome, including assessments for non-host homology, protein essentiality, and virulence, in order to prioritize potential drug targets. Among these targets were Integration host factor subunit alpha and Tyrosine recombinase XerC. Furthermore, four drug-like compounds showing potential inhibitory effects against both target proteins were identified. Subsequently, molecular docking analysis was conducted involving these targets and the compounds. This initial study provides the list of novel targets against S. dysenteriae. Conclusively, future in vitro investigations could validate our in-silico findings and uncover potential therapeutic drugs for combating bacillary dysentery infection.


Subject(s)
Anti-Bacterial Agents , Computer Simulation , Dysentery, Bacillary , Molecular Docking Simulation , Shigella dysenteriae , Shigella dysenteriae/drug effects , Shigella dysenteriae/genetics , Shigella dysenteriae/pathogenicity , Humans , Anti-Bacterial Agents/pharmacology , Dysentery, Bacillary/microbiology , Dysentery, Bacillary/drug therapy , Genome, Bacterial , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Computational Biology/methods
5.
Cureus ; 16(3): e56709, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38646239

ABSTRACT

Background Arrhythmogenic right ventricular cardiomyopathy (ARVC) is a challenging genetic disorder marked by ventricular arrhythmias and sudden cardiac death, particularly in athletes and young adults. Despite its clinical significance, the relative effectiveness and safety of catheter ablation versus conventional management in ARVC are not fully delineated. Objective This study evaluates the efficacy and safety of catheter ablation compared to conventional management in reducing ventricular arrhythmias and improving patient outcomes over five years in ARVC patients. Methods In a retrospective cohort design at Lady Reading Hospital, Peshawar, we analyzed 120 ARVC patients from January 2018 to December 2023. Patients were divided into two groups: those undergoing catheter ablation and those receiving conventional management. Primary outcomes assessed were recurrence of ventricular arrhythmias, procedural complications, hospitalization duration, and mortality rates. Logistic regression was adjusted for demographics and clinical variables. Results Catheter ablation significantly lowered the recurrence of ventricular arrhythmias (20% vs. 55%, p<0.01) and reduced hospital stay duration (4 ± 2 days vs. 7 ± 3 days, p<0.05). A trend toward reduced five-year mortality was observed in the catheter ablation group (5% vs. 15%, p=0.07). Age, New York Heart Association class, and exercise capacity emerged as significant predictors of outcomes. Conclusions Catheter ablation outperforms conventional management in reducing the recurrence of ventricular arrhythmias and hospitalization in ARVC patients, with a promising trend toward enhanced survival. These findings advocate for personalized management strategies in ARVC, highlighting the necessity for further research to establish the long-term benefits of catheter ablation.

6.
Cureus ; 16(2): e55291, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38558614

ABSTRACT

Background The adoption of same-day discharge (SDD) in elective percutaneous coronary intervention (PCI) procedures offers potential benefits in terms of patient satisfaction and reduced healthcare costs. Despite these advantages, the safety and efficacy of SDD, especially among patients with diverse health profiles, are not fully understood. This study investigates the effects of patient-specific factors, including age, comorbidities, and discharge timing, on the clinical outcomes of elective PCI, focusing on the viability of SDD. Methods A prospective study was carried out at Lady Reading Hospital, Peshawar, Pakistan, involving 220 patients undergoing elective PCI from January to June 2023. This research compared the clinical outcomes of patients discharged on the same day with those who had extended hospital stays, examining the impact of age, comorbidities, and PCI success. Main outcome measures included post-procedure complications and hospital readmissions within 30 days. Results The study enrolled participants with an average age of 62 years, the majority (88%, n=194/220) of whom had comorbidities. Interestingly, 16% (n=35/220) of the participants were discharged on the same day, while the rest stayed longer in the hospital. Notably, those in the SDD group experienced significantly more complications and readmissions, with 95.14% (n=33/36) compared to only 16.22% (n=30/184) in their counterparts. Factors such as age, comorbidities, success of PCI, timing of discharge, and patient satisfaction emerged as significant predictors of the observed outcomes. Conclusion This study highlights the essential role of personalized care in discharge planning following elective PCI, advocating for a cautious approach towards SDD, especially for older patients and those with multiple health issues.

7.
Cureus ; 16(2): e53493, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38440007

ABSTRACT

Background Contrast-induced nephropathy (CIN) significantly complicates percutaneous coronary intervention (PCI), with a higher prevalence in diabetic patients. This study compares the incidence of CIN in diabetic and non-diabetic patients undergoing PCI. Material and methods Conducted at Lady Reading Hospital, Peshawar, PAK, from January to December 2023, this observational study involved 450 adult patients with coronary artery disease (CAD) undergoing PCI. The cohort was categorized based on diabetes status, excluding patients with chronic kidney disease and those on renal replacement therapy. Baseline characteristics documented included age, gender, blood pressure, creatinine levels, and the presence of acute coronary syndrome (ACS). CIN was defined as a ≥25% increase in serum creatinine from baseline within 48-72 hours post-PCI. Data analysis was performed using the Statistical Package for the Social Sciences (IBM SPSS Statistics for Windows, IBM Corp., Version 25.0, Armonk, NY), incorporating descriptive statistics, Chi-square tests, and independent t-tests, with a significance level of p<0.05. Results The median age of the study population was 55 years. The cohort comprised 52% male (n=234) and 48% female (n=216). Notably, 33% (n=149) had ACS. Diabetic patients exhibited a significantly higher incidence of CIN post-PCI compared to non-diabetics. The highest incidence of CIN (17%, n=77) occurred in the 70+ age group. The findings highlight the criticality of renal function monitoring and procedural adjustments for diabetic patients. Conclusion Diabetic patients demonstrate an increased risk of CIN following PCI. This necessitates the development of tailored prevention strategies for this high-risk subgroup.

8.
Arch Microbiol ; 206(4): 196, 2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38546887

ABSTRACT

The world is concerned about the emergence of pathogens and the occurrence and spread of antibiotic resistance among pathogens. Drug development requires time to combat these issues. Consequently, drug development from natural sources is unavoidable. Cryosphere represents a gigantic source of microbes that could be the bioprospecting source of natural products with unique scaffolds as molecules or drug templates. This review focuses on the novel source of drug discovery and cryospheric environments as a potential source for microbial metabolites having potential medicinal applications. Furthermore, the problems encountered in discovering metabolites from cold-adapted microbes and their resolutions are discussed. By adopting modern practical approaches, the discovery of bioactive compounds might fulfill the demand for new drug development.


Subject(s)
Biological Products , Drug Discovery , Bioprospecting , Biological Products/pharmacology
9.
Article in English | MEDLINE | ID: mdl-38436844

ABSTRACT

Resource depletion and climate changes due to human activities and excessive burning of fossil fuels are the driving forces to explore alternatives clean energy resources. The objective of this study was to investigate the potential of potato peel waste (PPW) at various temperatures T15 (15 °C), T25 (25 °C), and T35 (35 °C) in anaerobic digestion (AD) for biogas generation. The highest biogas and CH4 production (117 mL VS-g and 74 mL VS-g) was observed by applying 35 °C (T35) as compared with T25 (65 mL VS-g and 22 mL VS-g) on day 6. Changes in microbial diversity associated with different temperatures were also explored. The Shannon index of bacterial community was not significantly affected, while there was a positive correlation of archaeal community with the applied temperatures. The bacterial phyla Firmicutes were strongly affected by T35 (39%), whereas Lactobacillus was the dominant genera at T15 (27%). Methanobacterium and Methanosarcina, as archaeal genera, dominated in T35 temperature reactors. In brief, at T35, Proteiniphilum and Methanosarcina were positively correlated with volatile fatty acids (VFAs) concentration. Spearman correlation revealed dynamic interspecies interactions among bacterial and archaeal genera; facilitating the AD system. This study revealed that temperature variations can enhance the microbial community of the AD system, leading to increased biogas production. It is recommended for optimizing the AD of food wastes.

10.
Environ Res ; 249: 118351, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38331158

ABSTRACT

The stability and effectiveness of the anaerobic digestion (AD) system are significantly influenced by temperature. While majority research has focused on the composition of the microbial community in the AD process, the relationships between functional gene profile deduced from gene expression at different temperatures have received less attention. The current study investigates the AD process of potato peel waste and explores the association between biogas production and microbial gene expression at 15, 25, and 35 °C through metatranscriptomic analysis. The production of total biogas decreased with temperature at 15 °C (19.94 mL/g VS), however, it increased at 35 °C (269.50 mL/g VS). The relative abundance of Petrimonas, Clostridium, Aminobacterium, Methanobacterium, Methanothrix, and Methanosarcina were most dominant in the AD system at different temperatures. At the functional pathways level 3, α-diversity indices, including Evenness (Y = 5.85x + 8.85; R2 = 0.56), Simpson (Y = 2.20x + 2.09; R2 = 0.33), and Shannon index (Y = 1.11x + 4.64; R2 = 0.59), revealed a linear and negative correlation with biogas production. Based on KEGG level 3, several dominant functional pathways associated with Oxidative phosphorylation (ko00190) (25.09, 24.25, 24.04%), methane metabolism (ko00680) (30.58, 32.13, and 32.89%), and Carbon fixation pathways in prokaryotes (ko00720) (27.07, 26.47, and 26.29%), were identified at 15 °C, 25 °C and 35 °C. The regulation of biogas production by temperature possibly occurs through enhancement of central function pathways while decreasing the diversity of functional pathways. Therefore, the methanogenesis and associated processes received the majority of cellular resources and activities, thereby improving the effectiveness of substrate conversion to biogas. The findings of this study illustrated the crucial role of central function pathways in the effective functioning of these systems.


Subject(s)
Biofuels , Temperature , Anaerobiosis , Microbiota , Bioreactors/microbiology , Bacteria/metabolism , Bacteria/genetics , Solanum tuberosum/microbiology
11.
Environ Res ; 250: 118450, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38360167

ABSTRACT

Assessing the relative importance of climate change and human activities is important in developing sustainable management policies for regional land use. In this study, multiple remote sensing datasets, i.e. CHIRPS (Climate Hazard Group InfraRed Precipitation with Station Data) precipitation, MODIS Land Surface Temperature (LST), Enhanced Vegetation Index (EVI), Potential Evapotranspiration (PET), Soil Moisture (SM), WorldPop, and nighttime light have been analyzed to investigate the effect that climate change (CC) and regional human activities (HA) have on vegetation dynamics in eastern India for the period 2000 to 2022. The relative influence of climate and anthropogenic factors is evaluated on the basis of non-parametric statistics i.e., Mann-Kendall and Sen's slope estimator. Significant spatial and elevation-dependent variations in precipitation and LST are evident. Areas at higher elevations exhibit increased mean annual temperatures (0.22 °C/year, p < 0.05) and reduced winter precipitation over the last two decades, while the northern and southwest parts of West Bengal witnessed increased mean annual precipitation (17.3 mm/year, p < 0.05) and a slight cooling trend. Temperature and precipitation trends are shown to collectively impact EVI distribution. While there is a negative spatial correlation between LST and EVI, the relationship between precipitation and EVI is positive and stronger (R2 = 0.83, p < 0.05). Associated hydroclimatic parameters are potent drivers of EVI, whereby PET in the southwestern regions leads to markedly lower SM. The relative importance of CC and HA on EVI also varies spatially. Near the major conurbation of Kolkata, and confirmed by nighttime light and population density data, changes in vegetation cover are very clearly dominated by HA (87%). In contrast, CC emerges as the dominant driver of EVI (70-85%) in the higher elevation northern regions of the state but also in the southeast. Our findings inform policy regarding the future sustainability of vulnerable socio-hydroclimatic systems across the entire state.


Subject(s)
Climate Change , India , Human Activities , Humans , Rain , Temperature , Environmental Monitoring
12.
Environ Res ; 247: 118288, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38262510

ABSTRACT

Antibiotic resistance (AR) has been extensively studied in natural habitats and clinical applications. AR is mainly reported with the use and misuse of antibiotics; however, little is known about its presence in antibiotic-free remote supraglacial lake environments. This study evaluated bacterial strains isolated from supraglacial lake debris and meltwater in Dook Pal Glacier, northern Pakistan, for antibiotic-resistant genes (ARGs) and metal-tolerant genes (MTGs) using conventional PCR. Several distinct ARGs were reported in the bacterial strains isolated from lake debris (92.5%) and meltwater (100%). In lake debris, 57.5% of isolates harbored the blaTEM gene, whereas 58.3% of isolates in meltwater possessed blaTEM and qnrA each. Among the ARGs, qnrA was dominant in debris isolates (19%), whereas in meltwater isolates, qnrA (15.2%) and blaTEM (15.2%) were dominant. ARGs were widely distributed among the bacterial isolates and different bacteria shared similar types of ARGs. Relatively greater number of ARGs were reported in Gram-negative bacterial strains. In addition, 92.5% of bacterial isolates from lake debris and 83.3% of isolates from meltwater harbored MTGs. Gene copA was dominant in meltwater isolates (50%), whereas czcA was greater in debris bacterial isolates (45%). Among the MTGs, czcA (18.75%) was dominant in debris strains, whereas copA (26.0%) was greater in meltwater isolates. This presents the co-occurrence and co-selection of MTGs and ARGs in a freshly appeared supraglacial lake. The same ARGs and MTGs were present in different bacteria, exhibiting horizontal gene transfer (HGT). Both positive and negative correlations were determined between ARGs and MTGs. The research provides insights into the existence of MTGs and ARGs in bacterial strains isolated from remote supraglacial lake environments, signifying the need for a more detailed study of bacteria harboring ARGs and MTGs in supraglacial lakes.


Subject(s)
Anti-Bacterial Agents , Bacteria , Anti-Bacterial Agents/pharmacology , Bacteria/genetics , Genes, Bacterial , Drug Resistance, Microbial/genetics , Lakes/microbiology , Metals
13.
Environ Res ; 241: 117672, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-37980986

ABSTRACT

Wet meadows, a type of wetland, are vulnerable to climate change and human activity, impacting soil properties and microorganisms that are crucial to the ecosystem processes of wet meadows. To decipher the ecological mechanisms and processes involved in wet meadows, it is necessary to examine the bacterial communities associated with plant roots. To gain valuable insight into the microbial dynamics of alpine wet meadows, we used Illumina MiSeq sequencing to investigate how environmental factors shape the bacterial communities thriving in the rhizosphere and rhizoplane of three plant species: Cremanthodium ellisii, Caltha scaposa, and Cremanthodium lineare. The most abundant bacterial phyla in rhizosphere and rhizoplane were Proteobacteria > Firmicutes > Actinobacteria, while Macrococcus, Lactococcus, and Exiguobacterium were the most abundant bacterial genera between rhizosphere and rhizoplane. The mantel test, network, and structure equation models revealed that bacterial communities of rhizosphere were shaped by total nitrogen (TN), soil water content (SWC), soil organic carbon (SOC), microbial biomass carbon (MBC), microbial biomass nitrogen (MBN), pH, however, rhizoplane bacterial communities exhibited varying results. The bacterial communities exhibited significant heterogeneity, with stochastic process predominating in both the rhizosphere and rhizoplane. PICRUSt2 and FAPROTAX analysis revealed substantial differences in key biogeochemical cycles and metabolic functional predictions. It was concluded that root compartments significantly influenced the bacterial communities, although plant species and elevation asserted varying effects. This study portrays how physicochemical properties, plant species, and elevations can shift the overall structure and functional repertoire of bacterial communities in alpine wet meadows.


Subject(s)
Ecosystem , Rhizosphere , Humans , Carbon , Grassland , Soil/chemistry , Soil Microbiology , Bacteria/genetics , Plants , Nitrogen
14.
Biology (Basel) ; 12(12)2023 Dec 07.
Article in English | MEDLINE | ID: mdl-38132325

ABSTRACT

Since Carl Woese's discovery of archaea as a third domain of life, numerous archaeal species have been discovered, yet archaeal diversity is poorly characterized. Culturing archaea is complicated, but several queries about archaeal cell biology, evolution, physiology, and diversity need to be solved by culturing and culture-dependent techniques. Increasing interest in demand for innovative culturing methods has led to various technological and methodological advances. The current review explains frequent hurdles hindering uncultured archaea isolation and discusses features for more archaeal cultivation. This review also discusses successful strategies and available media for archaeal culturing, which might be helpful for future culturing practices.

15.
Environ Res ; 239(Pt 2): 117444, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37858689

ABSTRACT

Studies of antibiotic-resistant bacteria (ARB) have mainly originated from anthropic-influenced environments, with limited information from pristine environments. Remote cold environments are major reservoirs of ARB and have been determined in polar regions; however, their abundance in non-polar cold habitats is underexplored. This study evaluated antibiotics and metals resistance profiles, prevalence of antibiotic resistance genes (ARGs) and metals tolerance genes (MTGs) in 38 ARB isolated from the glacier debris and meltwater from Baishui Glacier No 1, China. Molecular identification displayed Proteobacteria (39.3%) predominant in debris, while meltwater was dominated by Actinobacteria (30%) and Proteobacteria (30%). Bacterial isolates exhibited multiple antibiotic resistance index values > 0.2. Gram-negative bacteria displayed higher resistance to antibiotics and metals than Gram-positive. PCR amplification exhibited distinct ARGs in bacteria dominated by ß-lactam genes blaCTX-M (21.1-71.1%), blaACC (21.1-60.5%), tetracycline-resistant gene tetA (21.1-60.5%), and sulfonamide-resistant gene sulI (18.4-52.6%). Moreover, different MTGs were reported in bacterial isolates, including mercury-resistant merA (21.1-63.2%), copper-resistant copB (18.4-57.9%), chromium-resistant chrA (15.8-44.7%) and arsenic-resistant arsB (10.5-44.7%). This highlights the co-selection and co-occurrence of MTGs and ARGs in remote glacier environments. Different bacteria shared same ARGs, signifying horizontal gene transfer between species. Strong positive correlation among ARGs and MTGs was reported. Metals tolerance range exhibited that Gram-negative and Gram-positive bacteria clustered distinctly. Gram-negative bacteria were significantly tolerant to metals. Amino acid sequences of blaACC,blaCTX-M,blaSHV,blaampC,qnrA, sulI, tetA and blaTEM revealed variations. This study presents promising ARB, harboring ARGs with variations in amino acid sequences, highlighting the need to assess the transcriptome study of glacier bacteria conferring ARGs and MTGs.


Subject(s)
Genes, Bacterial , Ice Cover , Ice Cover/microbiology , Prevalence , Angiotensin Receptor Antagonists , Angiotensin-Converting Enzyme Inhibitors , Bacteria , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/analysis , Metals/analysis , Gram-Negative Bacteria/genetics , Drug Resistance, Bacterial/genetics
16.
J Basic Microbiol ; 63(10): 1165-1176, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37469200

ABSTRACT

Psychrophiles are cold-adapted microorganisms living in cold regions and are known to generate cold-active enzymes such as proteases, lipases, and peptidases. These types of enzymes are a major part of the market of the food and textile sector. This study aimed to isolate and characterize the cold-active and detergent-stable, extracellular protease from psychotrophic bacteria Serratia sp. TGS1 (OQ654005). Protease was purified by gel permeation chromatography using Sephadex G-75. The specific activity of the purified protease was 250 U/mg at 15°C, with a purification fold of 5.68 and a percentage yield of 60%. The cold active protease was stable within a temperature range of 5-30°C and a pH range of 6-10. Ca+2 and Mg+2 enhanced its activity while chelators like ethylenediaminetetraacetic acid inhibited cold active protease, showing it as metalloprotease in nature. The enzyme was sensitive to Cu+2 , Zn+2 , and Hg+2 , and the proteolytic activity decreased upon treatment with heavy metals. The molecular weight of the protease was estimated to be 47 kDa using sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis. Proteins within a specific range of molecular weight possess desirable properties for industrial enzyme use. By working on a specific range, the researchers intended to examine an enzyme to examine its specific characteristics. The purified protease showed high stability to detergents like SDS, Tween 20, Tween 60, and Triton X. The maximum velocity Vmax and Km values were 59.90 mg/min/mL and 1.53 mg/mL, respectively. The obtained protease exhibited an interesting activity at a broad range of pH (6-10) and stability at low temperatures (5-30°C) and detergents. Such enzymatic features of versatile and potent cold-active enzymes enhance their industrial applications to meet food, dairy, and laundry requirements.

17.
Int. microbiol ; 26(2): 309-325, May. 2023. mapas
Article in English | IBECS | ID: ibc-220224

ABSTRACT

Recently, a supraglacial lake formed as a result of a glacial lake outburst flood (GLOF) in the Dook Pal Glacier. Lake debris and meltwater samples were collected from the supraglacial lake to determine bacterial diversity. Geochemical analyses of samples showed free amino acids (FAAs), anions, cations, and heavy metals. Comparable viable bacterial counts were observed in meltwater and debris samples. Using R2A media, a total of 52 bacterial isolates were identified: 40 from debris and 12 from meltwater. The relative abundance of Gram-positive (80.8%) bacteria was greater than Gram-negative (19.2%). Molecular identification of these isolates revealed that meltwater was dominated by Firmicutes (41.6%) and Proteobacteria (41.6%), while lake debris was dominated by Firmicutes (65.0%). The isolates belonged to 14 genera with the greatest relative abundance in Bacillus. Tolerance level of isolates to salts was high. Most of the Gram-positive bacteria were eurypsychrophiles, while most of the Gram-negative bacteria were stenopsychrophiles. Gram-negative bacteria displayed a higher minimum inhibitory concentration of selected heavy metals and antibiotics than Gram-positive. This first-ever study of culturable bacteria from a freshly formed supraglacial lake improves our understanding of the bacterial diversity and antibiotic resistance released from the glaciers as a result of GLOF.(AU)


Subject(s)
Humans , Bacteria/classification , Drug Resistance, Microbial , Lakes , Floods , Waste Products , Pakistan , Polar Melting
18.
Appl Biochem Biotechnol ; 195(8): 4915-4935, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37115385

ABSTRACT

This study aims to determine UV-B resistance and to investigate computational analysis and antioxidant potential of methoxy-flavones of Micromonospora aurantiaca TMC-15 isolated from Thal Desert, Pakistan. The cellular extract was purified through solid-phase extraction and UV-Vis spectrum analysis indicated absorption peaks at λmax 250 nm, 343 nm, and 380 nm that revealed the presence of methoxy-flavones named eupatilin and 5-hydroxyauranetin. The flavones were evaluated for their antioxidant as well as protein and lipid peroxidation inhibition potential using di(phenyl)-(2,4,6-trinitrophenyl) iminoazanium (DPPH), 2,4-dinitrophenyl hydrazine (DNPH), and thiobarbituric acid reactive substances (TBARS) assays, respectively. The methoxy-flavones were further studied for their docking affinity and interaction dynamics to determine their structural and energetic properties at the atomic level. The antioxidant potential, protein, and lipid oxidation inhibition and DNA damage preventive abilities were correlated as predicted by computational analysis. The eupatilin and 5-hydroxyauranetin binding potential to their targeted proteins 1N8Q and 1OG5 is - 4.1 and - 7.5 kcal/mol, respectively. Moreover, the eupatiline and 5-hydroxyauranetin complexes illustrate van der Waals contacts and strong hydrogen bonds to their respective enzymes target. Both in vitro studies and computational analysis results revealed that methoxy-flavones of Micromonospora aurantiaca TMC-15 can be used against radiation-mediated oxidative damages due to its kosmotrophic nature. The demonstration of good antioxidant activities not only protect DNA but also protein and lipid oxidation and therefore could be a good candidate in radioprotective drugs and as sunscreen due to its kosmotropic nature.


Subject(s)
Flavones , Micromonospora , Flavones/pharmacology , Antioxidants/pharmacology , Lipids
19.
Molecules ; 28(6)2023 Mar 14.
Article in English | MEDLINE | ID: mdl-36985607

ABSTRACT

Over the past decade, methicillin-resistant Staphylococcus aureus (MRSA) has become a major source of biofilm formation and a major contributor to antimicrobial resistance. The genes that govern biofilm formation are regulated by a signaling mechanism called the quorum-sensing system. There is a need for new molecules to treat the infections caused by dangerous pathogens like MRSA. The current study focused on an alternative approach using juglone derivatives from Reynoutria japonica as quorum quenchers. Ten bioactive compounds from this plant, i.e., 2-methoxy-6-acetyl-7-methyljuglone, emodin, emodin 8-o-b glucoside, polydatin, resveratrol, physcion, citreorosein, quercetin, hyperoside, and coumarin were taken as ligands and docked with accessory gene regulator proteins A, B, and C and the signal transduction protein TRAP. The best ligand was selected based on docking score, ADMET properties, and the Lipinski rule. Considering all these parameters, resveratrol displayed all required drug-like properties with a docking score of -8.9 against accessory gene regulator protein C. To further assess the effectiveness of resveratrol, it was compared with the commercially available antibiotic drug penicillin. A comparison of all drug-like characteristics showed that resveratrol was superior to penicillin in many aspects. Penicillin showed a binding affinity of -6.7 while resveratrol had a score of -8.9 during docking. This was followed by molecular dynamic simulations wherein inhibitors in complexes with target proteins showed stability inside the active site during the 100 ns simulations. Structural changes due to ligand movement inside the cavity were measured in the protein targets, but they remained static due to hydrogen bonds. The results showed acceptable pharmacokinetic properties for resveratrol as compared to penicillin. Thus, we concluded that resveratrol has protective effects against Staphylococcus aureus infections and that it suppresses the quorum-sensing ability of this bacterium by targeting its infectious proteins.


Subject(s)
Emodin , Methicillin-Resistant Staphylococcus aureus , Reynoutria , Resveratrol/pharmacology , Emodin/pharmacology , Ligands , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Quorum Sensing , Penicillins/pharmacology , Microbial Sensitivity Tests , Biofilms
20.
Front Plant Sci ; 14: 1084218, 2023.
Article in English | MEDLINE | ID: mdl-36993846

ABSTRACT

In the Tibetan Plateau grassland ecosystems, nitrogen (N) availability is rising dramatically; however, the influence of higher N on the arbuscular mycorrhizal fungi (AMF) might impact on plant competitive interactions. Therefore, understanding the part played by AMF in the competition between Vicia faba and Brassica napus and its dependence on the N-addition status is necessary. To address this, a glasshouse experiment was conducted to examine whether the grassland AMF community's inocula (AMF and NAMF) and N-addition levels (N-0 and N-15) alter plant competition between V. faba and B. napus. Two harvests took day 45 (1st harvest) and day 90 (2nd harvest), respectively. The findings showed that compared to B. napus, AMF inoculation significantly improved the competitive potential of the V. faba. In the occurrence of AMF, V. faba was the strongest competitor being facilitated by B. napus in both harvests. While under N-15, AMF significantly enhanced tissue N:P ratio in B. napus mixed-culture at 1st harvest, the opposite trend was observed in 2nd harvest. The mycorrhizal growth dependency slightly negatively affected mixed-culture compared to monoculture under both N-addition treatments. The aggressivity index of AMF plants was higher than NAMF plants with both N-addition and harvests. Our observation highlights that mycorrhizal associations might facilitate host plant species in mixed-culture with non-host plant species. Additionally, interacting with N-addition, AMF could impact the competitive ability of the host plant not only directly but also indirectly, thereby changing the growth and nutrient uptake of competing plant species.

SELECTION OF CITATIONS
SEARCH DETAIL
...