Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Respir Cell Mol Biol ; 67(4): 482-490, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35776523

ABSTRACT

Asthma is a common respiratory disease characterized, in part, by excessive airway smooth muscle (ASM) contraction (airway hyperresponsiveness). Various GABAAR (γ-aminobutyric acid type A receptor) activators, including benzodiazepines, relax ASM. The GABAAR is a ligand-operated Cl- channel best known for its role in inhibitory neurotransmission in the central nervous system. Although ASM cells express GABAARs, affording a seemingly logical site of action, the mechanism(s) by which GABAAR ligands relax ASM remains unclear. PI320, a novel imidazobenzodiazepine designed for tissue selectivity, is a promising asthma drug candidate. Here, we show that PI320 alleviates methacholine (MCh)-induced bronchoconstriction in vivo and relaxes peripheral airways preconstricted with MCh ex vivo using the forced oscillation technique and precision-cut lung slice experiments, respectively. Surprisingly, the peripheral airway relaxation demonstrated in precision-cut lung slices does not appear to be GABAAR-dependent, as it is not inhibited by the GABAAR antagonist picrotoxin or the benzodiazepine antagonist flumazenil. Furthermore, we demonstrate here that PI320 inhibits MCh-induced airway constriction in the absence of external Ca2, suggesting that PI320-mediated relaxation is not mediated by inhibition of Ca2+ influx in ASM. However, PI320 does inhibit MCh-induced intracellular Ca2+ oscillations in peripheral ASM, a key mediator of contraction that is dependent on sarcoplasmic reticulum Ca2+ mobilization. Furthermore, PI320 inhibits peripheral airway constriction induced by experimentally increasing the intracellular concentration of inositol triphosphate (IP3). These novel data suggest that PI320 relaxes murine peripheral airways by inhibiting intracellular Ca2+ mobilization in ASM, likely by inhibiting Ca2+ release through IP3Rs (IP3 receptors).


Subject(s)
Asthma , Calcium , Animals , Asthma/drug therapy , Asthma/metabolism , Calcium/metabolism , Calcium Signaling , Flumazenil/metabolism , Inositol/metabolism , Ligands , Lung/metabolism , Methacholine Chloride/pharmacology , Mice , Muscle Contraction , Muscle, Smooth/metabolism , Picrotoxin/metabolism , gamma-Aminobutyric Acid/metabolism
2.
Antimicrob Agents Chemother ; 60(3): 1336-42, 2015 Dec 14.
Article in English | MEDLINE | ID: mdl-26666944

ABSTRACT

The evolution of antibiotic resistance in bacteria has become one of the defining problems in modern biology. Bacterial resistance to antimicrobial therapy threatens to eliminate one of the pillars of the practice of modern medicine. Yet, in spite of the importance of this problem, only recently have the dynamics of the shift from antibiotic sensitivity to resistance in a bacterial population been studied. In this study, a novel chemostat method was used to observe the evolution of resistance to streptomycin in a sensitive population of Escherichia coli, which grew while the concentration of antibiotic was constantly increasing. The results indicate that resistant mutants remain at a low frequency for longer than expected and do not begin to rise to a high frequency until the antibiotic concentrations are above the measured MIC, creating a "lull period" in which there were few bacterial cells growing in the chemostats. Overall, mutants resistant to streptomycin were found in >60% of the experimental trial replicates. All of the mutants detected were found to have MICs far above the maximum levels of streptomycin to which they were exposed and reached a high frequency within 96 h.


Subject(s)
Anti-Bacterial Agents/pharmacology , Drug Resistance, Bacterial/drug effects , Escherichia coli/drug effects , Streptomycin/pharmacology , Anti-Bacterial Agents/administration & dosage , Biological Evolution , Escherichia coli Proteins/genetics , Microbial Sensitivity Tests , Mutation , Polymorphism, Single Nucleotide , Ribosomal Proteins/genetics , Streptomycin/administration & dosage
SELECTION OF CITATIONS
SEARCH DETAIL
...