Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 11(1): 3305, 2020 Jul 03.
Article in English | MEDLINE | ID: mdl-32620749

ABSTRACT

Colloidal semiconductor quantum wells have emerged as a promising material platform for use in solution-processable lasers. However, applications relying on their optical gain suffer from nonradiative Auger decay due to multi-excitonic nature of light amplification in II-VI semiconductor nanocrystals. Here, we show sub-single exciton level of optical gain threshold in specially engineered CdSe/CdS@CdZnS core/crown@gradient-alloyed shell quantum wells. This sub-single exciton ensemble-averaged gain threshold of (Ng)≈ 0.84 (per particle) resulting from impeded Auger recombination, along with a large absorption cross-section of quantum wells, enables us to observe the amplified spontaneous emission starting at an ultralow pump fluence of ~ 800 nJ cm-2, at least three-folds better than previously reported values among all colloidal nanocrystals. Finally, using these gradient shelled quantum wells, we demonstrate a vertical cavity surface-emitting laser operating at a low lasing threshold of 7.5 µJ cm-2. These results represent a significant step towards the realization of solution-processable electrically-driven colloidal lasers.

2.
Plants (Basel) ; 9(5)2020 May 22.
Article in English | MEDLINE | ID: mdl-32455988

ABSTRACT

BACKGROUND: Hyoscyamus niger L. (Solanaceae) generally known as henbane, is commonly distributed in Europe and Asia. In Turkey, henbane seeds have been used in folk medicine to remove worms from the eyes. The present study aimed to investigate the insecticidal activity of H. niger seeds. METHODS: n-hexane, ethyl acetate, methanol and alkaloid extracts were prepared from the seeds of the plant and their insecticidal activities on Lucilia sericata larvae were evaluated. EC50 and EC90 values of the alkaloid extract were calculated and morphological abnormalities were investigated. RESULTS: Alkaloid extract prepared from the seeds of this plant displayed significant insecticidal activity. EC50 values of H. niger seeds alkaloid extract were found to be 8.04, 8.49, 7.96 µg/mL against first, second and third instar, respectively. It was determined that malformations of larvae included damaged larvae with small size, contraction and weak cuticle. Furthermore, HPLC analysis was performed on alkaloid extract of H. niger seeds and main components of the extract were determined. It was determined that alkaloid extract mainly contain hyoscyamine and scopolamine. CONCLUSIONS: These results confirm the folkloric usage of the plant and suggest that the alkaloid content of the plant could be responsible for the insecticidal activity.

3.
ACS Nano ; 13(9): 10662-10670, 2019 Sep 24.
Article in English | MEDLINE | ID: mdl-31436957

ABSTRACT

As an attractive materials system for high-performance optoelectronics, colloidal nanoplatelets (NPLs) benefit from atomic-level precision in thickness, minimizing emission inhomogeneous broadening. Much progress has been made to enhance their photoluminescence quantum yield (PLQY) and photostability. However, to date, layer-by-layer growth of shells at room temperature has resulted in defects that limit PLQY and thus curtail the performance of NPLs as an optical gain medium. Here, we introduce a hot-injection method growing giant alloyed shells using an approach that reduces core/shell lattice mismatch and suppresses Auger recombination. Near-unity PLQY is achieved with a narrow full-width-at-half-maximum (20 nm), accompanied by emission tunability (from 610 to 650 nm). The biexciton lifetime exceeds 1 ns, an order of magnitude longer than in conventional colloidal quantum dots (CQDs). Reduced Auger recombination enables record-low amplified spontaneous emission threshold of 2.4 µJ cm-2 under one-photon pumping. This is lower by a factor of 2.5 than the best previously reported value in nanocrystals (6 µJ cm-2 for CdSe/CdS NPLs). Here, we also report single-mode lasing operation with a 0.55 mJ cm-2 threshold under two-photoexcitation, which is also the best among nanocrystals (compared to 0.76 mJ cm-2 from CdSe/CdS CQDs in the Fabry-Pérot cavity). These findings indicate that hot-injection growth of thick alloyed shells makes ultrahigh performance NPLs.

4.
Nano Lett ; 19(7): 4297-4305, 2019 07 10.
Article in English | MEDLINE | ID: mdl-31185570

ABSTRACT

We proposed and showed strongly orientation-controlled Förster resonance energy transfer (FRET) to highly anisotropic CdSe nanoplatelets (NPLs). For this purpose, we developed a liquid-air interface self-assembly technique specific to depositing a complete monolayer of NPLs only in a single desired orientation, either fully stacked (edge-up) or fully nonstacked (face-down), with near-unity surface coverage and across large areas over 20 cm2. These NPL monolayers were employed as acceptors in an energy transfer working model system to pair with CdZnS/ZnS core/shell quantum dots (QDs) as donors. We found the resulting energy transfer from the QDs to be significantly accelerated (by up to 50%) to the edge-up NPL monolayer compared to the face-down one. We revealed that this acceleration of FRET is accounted for by the enhancement of the dipole-dipole interaction factor between a QD-NPL pair (increased from 1/3 to 5/6) as well as the closer packing of NPLs with stacking. Also systematically studying the distance-dependence of FRET between QDs and NPL monolayers via varying their separation (d) with a dielectric spacer, we found out that the FRET rate scales with d-4 regardless of the specific NPL orientation. Our FRET model, which is based on the original Förster theory, computes the FRET efficiencies in excellent agreement with our experimental results and explains well the enhancement of FRET to NPLs with stacking. These findings indicate that the geometrical orientation of NPLs and thereby their dipole interaction strength can be exploited as an additional degree of freedom to control and tune the energy transfer rate.

SELECTION OF CITATIONS
SEARCH DETAIL
...