Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Jpn J Radiol ; 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38888852

ABSTRACT

PURPOSE: We aimed to identify computed tomography (CT) radiomics features that are associated with cellular infiltration and construct CT radiomics models predictive of cellular infiltration in patients with fibrotic ILD. MATERIALS AND METHODS: CT images of patients with ILD who underwent surgical lung biopsy (SLB) were analyzed. Radiomics features were extracted using artificial intelligence-based software and PyRadiomics. We constructed a model predicting cell counts in histological specimens, and another model predicting two classifications of higher or lower cellularity. We tested these models using external validation. RESULTS: Overall, 100 patients (mean age: 62 ± 8.9 [standard deviation] years; 61 men) were included. The CT radiomics model used to predict cell count in 140 histological specimens predicted the actual cell count in 59 external validation specimens (root-mean-square error: 0.797). The two-classification model's accuracy was 70% and the F1 score was 0.73 in the external validation dataset including 30 patients. CONCLUSION: The CT radiomics-based model developed in this study provided useful information regarding the cellular infiltration in the ILD with good correlation with SLB specimens.

2.
Top Magn Reson Imaging ; 32(1): 5-13, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36735623

ABSTRACT

PURPOSE: Previous work used phantoms to calibrate the nonlinear relationship between the gadolinium contrast concentration and the intensity of the magnetic resonance imaging signal. This work proposes a new nonlinear calibration procedure without phantoms and considers the variation of contrast agent mass minimum combined with the multiple input blood flow system. This also proposes a new single-input method with meaningful variables that is not influenced by reperfusion or noise generated by aliasing. The reperfusion in the lung is usually neglected and is not considered by the indicator dilution method. However, in cases of lung cancer, reperfusion cannot be neglected. A new multiple input method is formulated, and the contribution of the pulmonary artery and bronchial artery to lung perfusion can be considered and evaluated separately. METHODS: The calibration procedure applies the minimum variation of contrast agent mass in 3 different regions: (1) pulmonary artery, (2) left atrium, and (3) aorta. It was compared with four dimensional computerized tomography with iodine, which has a very high proportional relationship between contrast agent concentration and signal intensity. RESULTS: Nonlinear calibration was performed without phantoms, and it is in the range of phantom calibration. It successfully separated the contributions of the pulmonary and bronchial arteries. The proposed multiple input method was verified in 6 subjects with lung cancer, and perfusion from the bronchial artery, rich in oxygen, was identified as very high in the cancer region. CONCLUSIONS: Nonlinear calibration of the contrast agent without phantoms is possible. Separate contributions of the pulmonary artery and aorta can be determined.


Subject(s)
Contrast Media , Lung Neoplasms , Humans , Calibration , Magnetic Resonance Imaging/methods , Tomography, X-Ray Computed , Lung Neoplasms/diagnostic imaging
3.
Diagnostics (Basel) ; 12(12)2022 Dec 04.
Article in English | MEDLINE | ID: mdl-36553045

ABSTRACT

We investigated the feasibility of a new deep-learning (DL)-based lung analysis method for the evaluation of interstitial lung disease (ILD) by comparing it with evaluation using the traditional computer-aided diagnosis (CAD) system and patients' clinical outcomes. We prospectively included 104 patients (84 with and 20 without ILD). An expert radiologist defined regions of interest in the typical areas of normal, ground-glass opacity, consolidation, consolidation with fibrosis (traction bronchiectasis), honeycombing, reticulation, traction bronchiectasis, and emphysema, and compared them with the CAD and DL-based analysis results. Next, we measured the extent of ILD lesions with the CAD and DL-based analysis and compared them. Finally, we compared the lesion extent on computed tomography (CT) images, as measured with the DL-based analysis, with pulmonary function tests results and patients' overall survival. Pearson's correlation analysis revealed a significant correlation between DL-based analysis and CAD results. Forced vital capacity was significantly correlated with DL-based analysis (r = 0.789, p < 0.001 for normal lung volume and r = −0.316, p = 0.001 for consolidation with fibrosis volume). Consolidation with fibrosis measured using DL-based analysis was independently associated with poor survival. The lesion extent measured using DL-based analysis showed a negative correlation with the pulmonary function test results and prognosis.

SELECTION OF CITATIONS
SEARCH DETAIL
...