Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Microorganisms ; 11(2)2023 Jan 19.
Article in English | MEDLINE | ID: mdl-36838234

ABSTRACT

The perennial gramineous grass Miscanthus condensatus functions as a major pioneer plant in colonizing acidic volcanic deposits on Miyake-jima, Japan, despite a lack of nitrogen nutrients. The nitrogen cycle in the rhizosphere is important for the vigorous growth of M. condensatus in this unfavorable environment. In the present study, we identified the nitrogen-cycling bacterial community in the M. condensatus rhizosphere on these volcanic deposits using a combination of metagenomics and culture-based analyses. Our results showed a large number of functional genes related to denitrification and dissimilatory nitrate reduction to ammonium (DNRA) in the rhizosphere, indicating that nitrate-transforming bacteria dominated the rhizosphere biome. Furthermore, nitrite reductase genes (i.e., nirK and nirS) related to the denitrification and those genes related to DNRA (i.e., nirB and nrfA) were mainly annotated to the classes Alpha-proteobacteria, Beta-proteobacteria, and Gamma-proteobacteria. A total of 304 nitrate-succinate-stimulated isolates were obtained from the M. condensatus rhizosphere and were classified into 34 operational taxonomic units according to amplified 16S rRNA gene restriction fragment pattern analysis. Additionally, two strains belonging to the genus Cupriavidus in the class Beta-proteobacteria showed a high in vitro denitrifying activity; however, metagenomic results indicated that the DNRA-related rhizobacteria appeared to take a major role in the nitrogen cycle of the M. condensatus rhizosphere in recent Miyake-jima volcanic deposits. This study elucidates the association between the Miscanthus rhizosphere and the nitrate-reducing bacterial community on newly placed volcanic deposits, which furthers our understanding of the transformation of nitrogen nutrition involved in the early development of vegetation.

2.
Sci Total Environ ; 831: 154897, 2022 Jul 20.
Article in English | MEDLINE | ID: mdl-35367255

ABSTRACT

This study reports the translocation of cesium-137 (137Cs) into deep soil layers, and the 137Cs transfer from soil to soybean in farmland under three tillage (no tillage, NT; rotary cultivation, RC; moldboard plow; MP) treatments and an undisturbed grassland (GL) at eight years after the Fukushima Dai-ichi Nuclear Power Plant (FDNPP) accident on 11 March 2011 in Japan. Tillage influences the 137Cs distribution in the 0-30 cm of soil; the distribution of 137Cs in the soil was uniform under RC and MP treatments, while in the grassland, most 137Cs was concentrated on the soil surface (0-2.5 cm). The center of vertical 137Cs radioactivity concentration (the thickness of the soil from surface which containing half of the 137Cs inventory) in GL was 5.5 cm, which was shallower than that in farmland (9.5 cm in NT, 13.6 cm in RC and 15.2 cm in MP). Hence, the total translocation distance of 137Cs 8 years after FDNPP accident showed the following trend: GL (2.4 cm) < NT (7.0 cm) < RC (10.0 cm) < MP (12.3 cm). Meanwhile, a significant positive correlation was observed between 137Cs radioactivity concentration and organic carbon and nitrogen content in the soil. However, the 137Cs radioactivity concentration in soybean grains was negatively correlated with the center of vertical 137Cs radioactivity concentration but positively correlated with the ratio of exchangeable 137Cs (ExCs) and K content in the soil. The ExCs/K and 137Cs distributions in the soil were combined into a statistical model to predict the 137Cs radioactivity concentration in soybean grain. The results revealed the magnitude of the impact of 137Cs distribution on the 137Cs transfer from soil to crop. The addition of the 137Cs distribution dramatically improved the accuracy of the prediction model of 137Cs radioactivity concentration in soybean.


Subject(s)
Fukushima Nuclear Accident , Radiation Monitoring , Soil Pollutants, Radioactive , Cesium Radioisotopes/analysis , Japan , Soil , Soil Pollutants, Radioactive/analysis , Transfer Factor
3.
Article in English | MEDLINE | ID: mdl-33459148

ABSTRACT

Although sclerotia are known as the resting bodies of fungi, the exact biochemical properties of melanized sclerotia that allow them to remain in the soil and retain their structure are unclear. This study aims to examine the mobility and accumulation of metals in melanin-pigmented sclerotia from low pH forest soils, focusing on Al, Cu, Zn, As, and Pb, and to discuss the regulating factors involved in element transfer from soil to sclerotia. Soil and sclerotia samples were collected from five sites, with soil samples analyzed for pH and element composition and sclerotium samples investigated in terms of element composition and 14C age. Results from our study indicate that sclerotia may archive the mobilization and availability of metal ions such as Zn, Cu, As, and Pb, as well as major metal ions such as Al and Fe. Although availability and uptake are influenced by environmental conditions, the mechanism of Al accumulation in sclerotia may be abiotically promoted due to melanin in sclerotia found in forest soil. Sclerotia can be a bio-indicator of environmental pollution. Our study makes a significant contribution to environmental toxicology, as few studies have focused on accumulation of metals in each transfer step from soil to sclerotia.


Subject(s)
Arsenic/analysis , Fungi/chemistry , Metals/analysis , Soil Pollutants/analysis , Environmental Monitoring/methods , Forests , Hydrogen-Ion Concentration , Melanins , Soil/chemistry
4.
Microbes Environ ; 34(3): 268-277, 2019 Sep 25.
Article in English | MEDLINE | ID: mdl-31327812

ABSTRACT

Microbial colonization, followed by succession, on newly exposed volcanic substrates represents the beginning of the development of an early ecosystem. During early succession, colonization by mosses or plants significantly alters the pioneer microbial community composition through the photosynthetic carbon input. To provide further insights into this process, we investigated the three-year-old volcanic deposits of Mount Merapi, Indonesia. Samples were collected from unvegetated (BRD) and moss-covered (BRUD) sites. Forest site soil (FRS) near the volcanic deposit-covered area was also collected for reference. An analysis of BRD and BRUD revealed high culturable cell densities (1.7-8.5×105 CFU g-1) despite their low total C (<0.01%). FRS possessed high CFU (3×106 g-1); however, its relative value per unit of total C (2.6%) was lower than that of the deposit samples. Based on the tag pyrosequencing of 16S rRNA genes, the BRD bacterial community was characterized by a higher number of betaproteobacterial families (or genus), represented by chemolithotrophic Methylophilaceae, Leptothrix, and Sulfuricellaceae. In contrast, BRUD was predominated by different betaproteobacterial families, such as Oxalobacteraceae, Comamonadaceae, and Rhodocyclaceae. Some bacterial (Oxalobacteraceae) sequences were phylogenetically related to those of known moss-associated bacteria. Within the FRS community, Proteobacteria was the most abundant phylum, followed by Acidobacteria, whereas Burkholderiaceae was the most dominant bacterial family within FRS. These results suggest that an inter-family succession of Betaproteobacteria occurred in response to colonization by mosses, followed by plants.


Subject(s)
Bryophyta/microbiology , Microbiota , Soil Microbiology , Volcanic Eruptions , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Biodiversity , Carbon/analysis , DNA, Bacterial/genetics , Forests , Indonesia , Phylogeny , Plants/microbiology , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Soil/chemistry
5.
PLoS One ; 9(10): e109233, 2014.
Article in English | MEDLINE | ID: mdl-25296037

ABSTRACT

Following the 2011 Fukushima Daiichi Nuclear Power Plant accident, the preservation of the food chain from radionuclides contamination has become of crucial importance. The potential of Dark septate endophytic fungi in the management of Cs accumulation in plants under contaminated environments was investigated using Chinese cabbage and tomato plants. Four endophytic fungal isolates of different species, i.e. Pseudosigmoidea ibarakiensis I.4-2-1, Veronaeopsis simplex Y34, Helminthosporium velutinum 41-1, and as yet unidentified taxon 312-6 were tested In Vitro in two levels of Cs (5ppm and 10ppm). On the plant growth, the inoculation of the selected DSEs to both Chinese cabbage and tomato resulted in an increased biomass of up to 82% and 122%, respectively compared to control (non-inoculated) plants. With regards to the Cs accumulation, it varied with the host plant considered. In Chinese cabbage, DSEs inoculation caused higher Cs accumulation in above ground plant parts, whereas in tomato, Cs accumulation decreased significantly with three of the isolates tested, i.e., V. simplex Y34, P. ibarakiensis I.4-2-1, and the as yet unidentified taxon 312-6 suggesting low-risk transfer on the above ground plants parts as a result of high and negative plant reactions rather than high and positive reactions as it is the case with Chinese cabbage. These results suggested that DSEs can be recommended for use with Chinese cabbage to enhance phytoremediation of Cs in surrounding contaminated areas. With tomato, DSEs can be recommended for decreasing the accumulation of Cs in plants under contaminated environments.


Subject(s)
Brassica/microbiology , Cesium/metabolism , Fungi/metabolism , Solanum lycopersicum/microbiology , Ascomycota/metabolism , Soil Pollutants, Radioactive/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...