Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 92
Filter
1.
Appl Environ Microbiol ; : e0030024, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38832774

ABSTRACT

Staphylococcus aureus is a common bacterium on the skin and in the nose that sometimes causes severe illness. Bacteriocins, antimicrobial peptides, or proteins produced by bacteria are candidates for the treatment of S. aureus infection. In this study, we found that a clinical Staphylococcus epidermidis strain, KSE112, produced the lantibiotic Pep5, which showed anti-S. aureus activity. The complete nucleotide sequence of the Pep5-encoding plasmid was determined. Several S. aureus two-component regulatory systems (TCSs) are known to be involved in bacteriocin susceptibility. Therefore, susceptibility tests were performed using TCS-inactivated S. aureus mutants to determine which TCS is responsible for Pep5 susceptibility; the ΔgraRS mutant exhibited increased susceptibility to Pep5, while the ΔsrrAB mutant exhibited decreased susceptibility. GraRS is known to regulate dltABCD and mprF in concert with vraFG, and Pep5 susceptibility was significantly increased in the ΔdltABCD, ΔmprF, and ΔvraFG mutants. Regarding the ΔsrrAB mutant, cross-resistance to aminoglycosides was observed. As aminoglycoside activity is known to be affected by aerobic respiration, we focused on qoxABCD and cydAB, which are quinol oxidase genes that are necessary for aerobic respiration and have downregulated the expression in the ΔsrrAB mutant. We constructed ΔqoxABCD and ΔcydAB mutants and found that qoxABCD inactivation decreased susceptibility to Pep5 and aminoglycosides. These results indicate that reduced aerobic respiration due to the reduced qoxABCD expression in the ΔsrrAB mutant decreased Pep5 activity.IMPORTANCEThe emergence of drug-resistant bacteria, including MRSA, is a severe health problem worldwide. Thus, the development of novel antimicrobial agents, including bacteriocins, is needed. In this report, we found a Pep5-producing strain with anti-S. aureus activity. We determined the complete sequence of the Pep5-encoding plasmid for the first time. However, in S. aureus, GraRS and its effectors conferred decreased susceptibility to Pep5. We also revealed that another TCS, SrrAB, affects susceptibility Pep5 and other lantibiotics by controlling aerobic respiration. In our study, we investigated the efficacy of Pep5 against S. aureus and other Gram-positive bacteria and revealed that respiratory constancy regulated by TCS is required for the antimicrobial activity of nisin, nukacin, and Pep5. These findings provide important information for the clinical application of bacteriocins and suggest that they have different properties among similar pore-forming lantibiotics.

2.
Inorg Chem ; 63(22): 10207-10220, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38767574

ABSTRACT

We prepared polyoxomolybdates with methylammonium countercations from methylammonium monomolybdate, (CH3NH3)2[MoO4], through two dehydrative condensation methods, acidifying in the aqueous solution and solid-state heating. Discrete (CH3NH3)10[Mo36O112(OH)2(H2O)14], polymeric ((CH3NH3)8[Mo36O112(H2O)14])n, and polymeric ((CH3NH3)4[γ-Mo8O26])n were selectively isolated via pH control of the aqueous (CH3NH3)2[MoO4] solution. The H2SO4-acidified solution of pH < 1 produced "sulfonated α-MoO3", polymeric ((CH3NH3)2[(MoO3)3(SO4)])n. The solid-state heating of (CH3NH3)2[MoO4] in air released methylamine and water to produce several methylammonium polyoxomolybdates in the sequence of discrete (CH3NH3)8[Mo7O24-MoO4], discrete (CH3NH3)6[Mo7O24], discrete (CH3NH3)8[Mo10O34], and polymeric ((CH3NH3)4[γ-Mo8O26])n, before their transformation into molybdenum oxides such as hexagonal-MoO3 and α-MoO3. Notably, some of their polyoxomolybdate structures were different from polyoxomolybdates produced from ammonium molybdates, such as (NH4)2[MoO4] or (NH4)6[Mo7O24], indicating that countercation affected the polyoxomolybdate structure. Moreover, among the tested polyoxomolybdates, (CH3NH3)6[Mo7O24] was the best negative staining reagent for the observation of the SARS-CoV-2 virus using transmission electron microscopy.

3.
J Ethnopharmacol ; 319(Pt 3): 117341, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-37879507

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: The terrestrial stems of Ephedra (Ephedra spp.; including Ephedra sinica Stapf and Ephedra przewalskii Stapf) extracts are used in traditional medicines in East Asia. In Japan, the Kampo formula containing E. sinica extract is prescribed for the treatment of the common cold, influenza virus infections, and mild symptoms of coronavirus disease 2019 (COVID-19). Although ephedrine alkaloids in E. sinica exert antitussive effects, they may have side effects associated with the sympathetic nervous system. E. przewalskii extract, a drug used in traditional Uyghur and Mongolian medicine, is considered to be free of ephedrine alkaloids and is a promising candidate for the treatment of infectious diseases. However, its use is currently limited because evidence of its antiviral efficacy remains inconclusive. AIM OF THE STUDY: We compared the anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) effects of E. przewalskii and E. sinica extracts in vitro. Additionally, we examined the differences in their antiviral effects against different SARS-CoV-2 strains. MATERIALS AND METHODS: VeroE6/TMPRSS2 cells were infected with SARS-CoV-2 (Conventional, Delta, and Omicron strains-BA.1, BA.2, BA.4, and BA.5), and lysates prepared from each herbal extract were added. The infectious titer was determined using the 50% tissue culture infectious dose (TCID50) method; in turn, the half-maximal inhibitory concentration (IC50) was calculated for each extract to compare the antiviral efficacy of E. sinica and E. przewalskii extracts. Further, the extracts were compared with remdesivir for their antiviral efficacy against the conventional viral strain. To verify the effect of the inactivation of virus particles, these extracts were added to each SARS-CoV-2 strain, and the infectious titers were determined using the TCID50 method. RESULTS: The antiviral efficacy (i.e., IC50) of the E. przewalskii extract against each SARS-CoV-2 strain was 2.7-10.8-fold greater than that of the E. sinica extract. The antiviral efficacy of the E. przewalskii extract against conventional viral strains was compared with that of remdesivir, which was 1/27.6 of remdesivir's efficacy. The E. sinica extract showed minimal inactivation of virus particles of each strain, whereas the E. przewalskii extract resulted in substantial viral inactivation. CONCLUSIONS: The E. przewalskii extract showed higher antiviral activity against SARS-CoV-2 than the E. sinica extract. Overall, our study suggests that E. przewalskii extract can be used for the treatment of viral infections, including COVID-19.


Subject(s)
Alkaloids , COVID-19 , Ephedra sinica , Ephedra , SARS-CoV-2 , Ephedrine , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Plant Extracts/pharmacology , Plant Extracts/therapeutic use
4.
Anticancer Res ; 44(1): 99-105, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38159977

ABSTRACT

BACKGROUND/AIM: Wide resection is usually performed for malignant bone and soft tissue tumors, but there is often functional impairment of the affected limb. In this study, we performed virotherapy with the vesicular stomatitis virus (VSV) and photothermal therapy using carbon nanotubes (CNTs) in combination for osteosarcoma, followed by marginal excision. The possibility of local treatment of the primary tumor was then assessed. MATERIALS AND METHODS: LM-8 cells (1×107) were subcutaneously implanted into 5-week-old mice to generate an in vivo osteosarcoma mouse model. Marginectomy was performed. Four groups with six mice each were created: VSV+SWCNTs group, VSV group, SWCNTs group, and an untreated group. Tumor margin resection was performed 2 weeks after tumor cell transplantation. The primary tumor volume, local recurrence, distant metastasis, and survival rate were evaluated. RESULTS: The combination of VSV virotherapy and CNTs photothermal therapy resulted in shrinkage of the primary tumor and reduced local recurrence after marginectomy. There was no significant difference in distant metastasis or survival rate for all groups. CONCLUSION: Combining virotherapy with VSV and CNTs photothermal therapy is useful for local treatment of osteosarcoma in murine models, possibly allowing for smaller tumor resection margins.


Subject(s)
Bone Neoplasms , Nanotubes, Carbon , Oncolytic Virotherapy , Oncolytic Viruses , Osteosarcoma , Mice , Animals , Oncolytic Virotherapy/methods , Disease Models, Animal , Photothermal Therapy , Cell Line, Tumor , Vesicular stomatitis Indiana virus , Osteosarcoma/therapy , Bone Neoplasms/therapy
5.
PLoS One ; 18(7): e0288634, 2023.
Article in English | MEDLINE | ID: mdl-37450488

ABSTRACT

Chlorous acid water (HClO2) is known for its antimicrobial activity. In this study, we attempted to accurately assess the ability of chlorous acid water to inactivate SARS-CoV-2. When using cell culture supernatants of infected cells as the test virus, the 99% inactivation concentration (IC99) for the SARS-CoV-2 D614G variant, as well as the Delta and Omicron variants, was approximately 10ppm of free chlorine concentration with a reaction time of 10 minutes. On the other hand, in experiments using a more purified virus, the IC99 of chlorous acid water was 0.41-0.74ppm with a reaction time of 1 minute, showing a strong inactivation capacity over 200 times. With sodium hypochlorite water, the IC99 was 0.54ppm, confirming that these chlorine compounds have a potent inactivation effect against SARS-CoV-2. However, it became clear that when using cell culture supernatants of infected cells as the test virus, the effect is masked by impurities such as amino acids contained therein. Also, when proteins (0.5% polypeptone, or 0.3% BSA + 0.3% sheep red blood cells, or 5% FBS) were added to the purified virus, the IC99 values became high, ranging from 5.3 to 76ppm with a reaction time of 10 minutes, significantly reducing the effect. However, considering that the usual usage concentration is 200ppm, it was shown that chlorous acid water can still exert sufficient disinfection effects even in the presence of proteins. Further research is needed to confirm the practical applications and effects of chlorous acid water, but it has the potential to be an important tool for preventing the spread of SARS-CoV-2.


Subject(s)
COVID-19 , Disinfectants , Viruses , Animals , Humans , Sheep , Disinfectants/pharmacology , SARS-CoV-2 , Chlorine/pharmacology , Water
6.
Viruses ; 15(7)2023 07 03.
Article in English | MEDLINE | ID: mdl-37515185

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which causes coronavirus disease 2019 (COVID-19), utilizes the host receptor angiotensin-converting enzyme 2 (ACE2) and the auxiliary receptor Neuropilin-1 (NRP1) to enter host cells. NRP1 has another isoform, NRP2, whose function in COVID-19 has seldom been reported. In addition, although patients with severe cases of COVID-19 often exhibit increased levels of proinflammatory cytokines, the relationship between these cytokines and SARS-CoV-2 proliferation remains unknown. The aim of this study is to clarify the roles of proinflammatory cytokines in Neuropilin expressions and in SARS-CoV-2 infection. To identify the expression patterns of NRP under inflamed and noninflamed conditions, next-generation sequencing (RNA-seq), immunohistochemistry, quantitative real-time PCR, and Western blotting were performed using primary cultured fibroblast-like synoviocytes, MH7A (immortalized cell line of human rheumatoid fibroblast-like synoviocytes), immortalized MRC5 (human embryonic lung fibroblast), and synovial tissues. To measure viral proliferative capacity, SARS-CoV-2 infection experiments were also performed. NRP2 was upregulated in inflamed tissues. Cytokine-stimulated human fibroblast cell lines, such as MH7A and immortalized MRC5, revealed that NRP2 expression increased with co-stimulation of tumor necrosis factor α (TNFα) and interleukin-1 beta (IL-1ß) and was suppressed with anti-TNFα antibody alone. TNFα and IL-1ß promoted SARS-CoV-2 proliferation and Spike protein binding. The viral proliferation coincided with the expression of NRP2, which was modulated through plasmid transfections. Our results revealed that proinflammatory cytokines, including TNFα, contribute to NRP2 upregulation and SARS-CoV-2 proliferation in host human cells.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Cell Proliferation , Cytokines , Interleukin-1beta , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , Tumor Necrosis Factor-alpha/pharmacology
7.
PLoS One ; 18(6): e0287545, 2023.
Article in English | MEDLINE | ID: mdl-37352136

ABSTRACT

BACKGROUND: Optineurin (OPTN) is associated with several human diseases, including amyotrophic lateral sclerosis (ALS), and is involved in various cellular processes, including autophagy. Optineurin regulates the expression of interferon beta (IFNß), which plays a central role in the innate immune response to viral infection. However, the role of optineurin in response to viral infection has not been fully clarified. It is known that optineurin-deficient cells produce more IFNß than wild-type cells following viral infection. In this study, we investigate the reasons for, and effects of, IFNß overproduction during optineurin deficiency both in vitro and in vivo. METHODS: To investigate the mechanism of IFNß overproduction, viral nucleic acids in infected cells were quantified by RT-qPCR and the autophagic activity of optineurin-deficient cells was determined to understand the basis for the intracellular accumulation of viral nucleic acids. Moreover, viral infection experiments using optineurin-disrupted (Optn-KO) animals were performed with several viruses. RESULTS: IFNß overproduction following viral infection was observed not only in several types of optineurin-deficient cell lines but also in Optn-KO mice and human ALS patient cells carrying mutations in OPTN. IFNß overproduction in Optn-KO cells was revealed to be caused by excessive accumulation of viral nucleic acids, which was a consequence of reduced autophagic activity caused by the loss of optineurin. Additionally, IFNß overproduction in Optn-KO mice suppressed viral proliferation, resulting in increased mouse survival following viral challenge. CONCLUSION: Our findings indicate that the combination of optineurin deficiency and viral infection leads to IFNß overproduction in vitro and in vivo. The effects of optineurin deficiency are elicited by viral infection, therefore, viral infection may be implicated in the development of optineurin-related diseases.


Subject(s)
Amyotrophic Lateral Sclerosis , Cell Cycle Proteins , Membrane Transport Proteins , Virus Diseases , Animals , Humans , Mice , Amyotrophic Lateral Sclerosis/genetics , Autophagy/genetics , Cell Cycle Proteins/genetics , Immunity, Innate , Interferon-beta/genetics , Transcription Factor TFIIIA/genetics , Transcription Factor TFIIIA/metabolism , Membrane Transport Proteins/genetics , Mice, Knockout
8.
Microbiol Immunol ; 67(7): 334-344, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37248051

ABSTRACT

We first investigated the interactions between several algae-derived lectins and severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). We created lectin columns using high-mannose (HM)-type glycan-specific lectins OAA and KAA-1 or core fucose-specific lectin hypninA-2 and conducted binding experiments with SARS-CoV-2. The results showed that these lectins were capable of binding to the virus. Furthermore, when examining the neutralization ability of nine different lectins, it was found that KAA-1, ESA-2, and hypninA-2 were effective in neutralizing SARS-CoV-2. In competitive inhibition experiments with glycoproteins, neutralization was confirmed to occur through HM-type or core fucose-type glycans. However, neutralization was not observed with other lectins, such as OAA. This trend of KAA-1 and ESA-2 having the neutralizing ability and OAA not having it was also similar to influenza viruses. Electron microscopy observations revealed that KAA-1 and hypninA-2 strongly aggregated SARS-CoV-2 particles, while OAA showed a low degree of aggregation. It is believed that the neutralization of SARS-CoV-2 involves multiple factors, such as glycan attachment sites on the S protein, the size of lectins, and their propensity to aggregate, which cause inhibition of receptor binding or aggregation of virus particles. This study demonstrated that several algae-derived lectins could neutralize SARS-CoV-2 and that lectin columns can effectively recover and concentrate the virus.


Subject(s)
COVID-19 , Orthomyxoviridae , Humans , SARS-CoV-2/metabolism , Mannose/metabolism , Fucose , Lectins/pharmacology , Mannose-Binding Lectins/metabolism , Mannose-Binding Lectins/pharmacology , Polysaccharides/metabolism
9.
Commun Biol ; 6(1): 395, 2023 04 11.
Article in English | MEDLINE | ID: mdl-37041231

ABSTRACT

The decrease of antibody efficacy to mutated SARS-CoV-2 spike RBD explains the breakthrough infections and reinfections by Omicron variants. Here, we analyzed broadly neutralizing antibodies isolated from long-term hospitalized convalescent patients of early SARS-CoV-2 strains. One of the antibodies named NCV2SG48 is highly potent to broad SARS-CoV-2 variants including Omicron BA.1, BA.2, and BA.4/5. To reveal the mode of action, we determined the sequence and crystal structure of the Fab fragment of NCV2SG48 in a complex with spike RBD from the original, Delta, and Omicron BA.1. NCV2SG48 is from a minor VH but the multiple somatic hypermutations contribute to a markedly extended binding interface and hydrogen bonds to interact with conserved residues at the core receptor-binding motif of RBD, which efficiently neutralizes a broad spectrum of variants. Thus, eliciting the RBD-specific B cells to the longitudinal germinal center reaction confers potent immunity to broad SARS-CoV-2 variants emerging one after another.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Antibodies , Immunoglobulin Fab Fragments
10.
Anticancer Res ; 43(3): 1185-1191, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36854523

ABSTRACT

BACKGROUND/AIM: Attempts have been made to enhance treatment with vesicular stomatitis virus (VSV) for osteosarcoma. We have previously shown that VSV incorporated with miRNA143 enhanced the antitumor effect at some doses; however, the range of the doses was narrow. This has not been evaluated in vivo, and the synergistic effect of this antitumor effect in animals is unknown. The purpose of the study was to evaluate the oncolytic effect of VSV-miRNA on osteosarcoma cells in vivo. MATERIALS AND METHODS: A novel oncolytic VSV was developed by incorporating the tumor-suppressor microRNA143 (rVSV-miR143). In order to compare the antitumor effects of administration methods (intravenous and intratumoral administration) of rVSV-miR143 with those of VSV, a comparative analysis of primary tumor volume, metastatic lesions and survival rate was performed in mouse models of osteosarcoma. RESULTS: Following intratumoral injection, rVSV-miR143 showed a significant reduction in primary tumor volume, but no significant difference was observed in metastatic lesions and survival rate compared to VSV. Following intravenous injection, rVSV-miR143 revealed no significant difference in primary tumor volume, metastatic lesion and survival rate compared to VSV. CONCLUSION: VSV incorporating tumor-suppressor miRNA143 demonstrated a slightly synergistic antitumor effect on osteosarcoma in vivo.


Subject(s)
Bone Neoplasms , MicroRNAs , Oncolytic Viruses , Osteosarcoma , Vesiculovirus , Animals , Mice , Bone Neoplasms/genetics , Bone Neoplasms/therapy , Disease Models, Animal , MicroRNAs/genetics , MicroRNAs/therapeutic use , Osteosarcoma/genetics , Osteosarcoma/therapy , Vesicular Stomatitis/virology , Oncolytic Viruses/metabolism
11.
Int J Infect Dis ; 126: 73-78, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36356797

ABSTRACT

OBJECTIVES: This study assessed the concentration of SARS-CoV-2 in the air of hospital rooms occupied by patients with COVID-19 who had viable SARS-CoV-2 in nasopharyngeal (NP) samples in early infection. METHODS: Between July and October 2021, NP swabs were collected from 20 patients with early SARS-CoV-2 infection admitted to a tertiary hospital in Japan. Air samples were collected from their rooms, tested for SARS-CoV-2 RNA, and cultured to determine potential infectivity. RESULTS: The NP swab samples of 18 patients were positive for viable SARS-CoV-2 (median concentration: 4.0 × 105 tissue culture infectious dose 50/ml). In the air samples, viral RNA (median concentration: 1.1 × 105 copies/m3) was detected in 12/18 (67%) patients, and viable virus (median concentration: 8.9 × 102 tissue culture infectious dose 50/m3) was detected in 5/18 (28%) patients. The median time between illness onset and sampling was 3 days. The RNA concentration was significantly higher in samples wherein viable SARS-CoV-2 was detected than in samples in which viable virus was not detected (P-value = 0.027). CONCLUSION: Viable SARS-CoV-2 can be detected in the air surrounding patients with early SARS-CoV-2 infection. Health care workers should pay attention to infection control when caring for patients with early SARS-CoV-2 infection.


Subject(s)
COVID-19 , Humans , COVID-19/diagnosis , SARS-CoV-2/genetics , RNA, Viral/genetics , Hospitals , Hospitalization
12.
Front Cell Dev Biol ; 10: 1005325, 2022.
Article in English | MEDLINE | ID: mdl-36393854

ABSTRACT

Peptidyl-prolyl isomerase (PPIase) is a unique enzyme that promotes cis-trans isomerization of a proline residue of a target protein. Peptidyl-prolyl cis-trans isomerase NIMA (never in mitosis A)-interacting 1 (Pin1) is a PPIase that binds to the pSer/pThr-Pro motif of target proteins and isomerizes their prolines. Pin1 has been reported to be involved in cancer development, obesity, aging, and Alzheimer's disease and has been shown to promote the growth of several viruses including SARS-CoV-2. Pin1 enhances the efficiency of viral infection by promoting uncoating and integration of the human immunodeficiency virus. It has also been shown that Pin1 interacts with hepatitis B virus proteins and participates in viral replication. Furthermore, Pin1 promotes not only viral proliferation but also the progression of virus-induced tumorigenesis. In this review, we focus on the effects of Pin1 on the proliferation of various viruses and discuss the underlying molecular mechanisms.

13.
Eur J Inorg Chem ; 2022(26): e202200322, 2022 Sep 19.
Article in English | MEDLINE | ID: mdl-35942204

ABSTRACT

The solid-state thermal structure transformation of methylammonium vanadate, (CH3NH3)VO3, from -150 °C to 350 °C is reported. Variable-temperature X-ray single-crystal structure analysis at 23, 0, -50, -100, and -150 °C reveal (CH3NH3)VO3 comprises of methylammonium cations and "snake-like" ([VO3]-)n anion chains propagating along the c-direction in the Pna21 space group. In between -150 and -100 °C, we observe a reversible structural transformation due to the re-orientation of the methylammonium cations in the crystal packing, which is also confirmed by the reversible profiles observed in differential scanning calorimetry. The methylammonium vanadate is stable until at ca. 100 °C and further heating releases methylamine and water and V2O5 is formed at ca. 275 °C . Furthermore, we show that the methylammonium vanadate can be used as a negative staining reagent for visualizing SARS-CoV-2, allowing us to discern the spike proteins from the body of the virus using transmission electron microscopy.

14.
Biochem Biophys Rep ; 31: 101302, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35782784

ABSTRACT

In our previous study, we found highly fatty acid salts, which are a skin-friendly soaps, had a high ability to inactivate the influenza virus. In order to elucidate the mechanism of inactivation of influenza virus, we investigated interactions and complex formation of potassium tetradecanoate (C14K) as a highly fatty acid salt with a virus particle (VP) derived from avian influenza virus by using isothermal titration calorimetry (ITC) and small-angle X-ray scattering (SAXS). ITC showed C14K attractively interacted with hemagglutinin protein (HA) which exists in the envelop of VP. SAXS analyses revealed C14K formed highly ordered complex with HA through the attractive interaction. Since the HA is responsible for cell entry events, inactivation of influenza viruses by highly fatty acid salts are derived owing to HA inhibition of influenza viruses through the complex formation. Time-resolved SAXS measurements elucidated the complex formation was completed within 40 s after mixing aqueous solutions of C14K and VP. This result strongly suggests that hand-washing with a highly fatty acid salts is an effective measure to prevent infection with influenza virus without causing rough hands.

15.
Photochem Photobiol Sci ; 21(11): 1895-1905, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35859250

ABSTRACT

TONS504 (C51H58N8O5I2), a chlorine derivative, effectively generates singlet oxygen by light activation and exhibits photodynamic antimicrobial effects (PAEs) on various pathogens. However, this photosensitizer has some limitations: a high tendency to self-aggregate and a relatively weak PAE for Gram-negative bacteria compared with Gram-positive bacteria. To overcome these limitations, the present study investigated the synergistic effects of the PAE of TONS504 and two additives commonly contained in ophthalmic solutions: benzalkonium chloride (BAC) or ethylenediaminetetraacetic acid (EDTA). Staphylococcus aureus and Pseudomonas aeruginosa were exposed to TONS504 and/or each additive. Photodynamic antimicrobial chemotherapy was performed with light irradiation centered at a wavelength of 665 nm with a total light energy of 30 J/cm2. Following incubation, the number of colonies formed was counted. Additionally, we examined the inhibitory effects of the additives on TONS504 self-aggregation by observing its absorption spectrum. Consequently, the PAEs of TONS504 on S. aureus were enhanced by both additives, and BAC displayed stronger synergistic effects on the bacteria than EDTA. By contrast, only EDTA increased the PAE on P. aeruginosa. The peak of the TONS504 absorption spectrum shifted to a longer wave length and the absorbance increased in the presence of BAC, suggesting that BAC inhibited the self-aggregation of the photosensitizer. In conclusion, the combination of BAC or EDTA and TONS504-mediated photodynamic antimicrobial chemotherapy exhibits a synergistic antimicrobial effect on S. aureus and P. aeruginosa. The optimal additive to enhance the PAE may differ between bacterial strains.


Subject(s)
Anti-Infective Agents , Photochemotherapy , Anti-Bacterial Agents/pharmacology , Anti-Infective Agents/pharmacology , Bacteria , Benzalkonium Compounds/pharmacology , Edetic Acid/pharmacology , Photosensitizing Agents/pharmacology , Pseudomonas aeruginosa , Staphylococcus aureus
16.
Protein Sci ; 31(6): e4338, 2022 06.
Article in English | MEDLINE | ID: mdl-35634777

ABSTRACT

DcsB, an enzyme produced from the d-cycloserine biosynthetic gene cluster, displays moderate similarity to arginase in the sequence and three-dimensional structure. Arginase is a ubiquitous enzyme hydrolyzing l-arginine to generate l-ornithine and urea, whereas DcsB hydrolyzes Nω -hydroxy-l-arginine (l-NOHA), an arginase inhibitor, to generate l-ornithine and hydroxyurea. We determined the crystal structure of DcsB associated with l-ornithine and that with the tetrahedral derivative of 2(S)-amino-6-boronohexanoic acid, whose boron atom forms a covalent bond with an oxygen atom bridging two manganese ions at the active center. The substrate-binding pocket of DcsB is narrower than that of arginase, suggesting that DcsB is unsuitable for the binding of l-NOHA in an inhibitory manner. The transition state-like structure demonstrated that Asp210 and Glu241 have a role to trap a positively charged ion near the dimanganese cluster. Kinetic analysis using the mutated DcsB showed that the enzyme employs different catalytic mechanisms under the neutral and alkaline pH conditions. Glu241 in DcsB is likely involved in the recognition of the hydroxyguanidino group of l-NOHA, whereas Asp210, in cooperation with Glu241, seems to contribute to the reactivity toward the protonated l-NOHA, which is a preferable species under the neutral pH conditions. After entering of the protonated l-NOHA to the substrate-binding pocket of DcsB, a hydronium ion may be trapped at the positive ion-binding site. Then, the ion serves as a specific acid catalyst to facilitate the collapse of the tetrahedral intermediate of l-NOHA.


Subject(s)
Arginase , Arginine , Amino Acids , Arginase/chemistry , Arginase/genetics , Arginine/metabolism , Catalysis , Kinetics , Ornithine
17.
J Infect Chemother ; 28(7): 912-917, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35370078

ABSTRACT

INTRODUCTION: New treatment methods, such as REGN-CoV2, have been approved for patients with coronavirus disease (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, the effect of the drug on the duration of infectious viral shedding and viral mutations is unknown. In this study, we investigated the clinical efficacy of REGN-CoV2 treatment in patients with mild to moderate disease and compared its antiviral effects against different strains of SARS-CoV-2. METHODS: Viral culture and PCR testing were performed on the pharyngeal swabs collected from 28 patients with COVID-19 who were admitted and treated at Hiroshima University Hospital during the study period. Of these, 23 patients were treated with REGN-CoV2. The patients were classified into the REGN-CoV2(+) and REGN-CoV2(-) groups, and the clinical course was compared between the groups. The 50% inhibitory concentrations (IC50) of REGN-CoV2 against the isolated virus strains were determined. RESULTS: After treatment with REGN-CoV2, the virus culture positivity rate was greatly reduced. The time to negative viral culture was significantly shorter in the REGN-CoV2(+) group than in the REGN-CoV2(-) group. In vitro evaluation of REGN-CoV2 against isolated virus strains also showed efficacy. CONCLUSIONS: REGN-CoV2 treatment was effective in patients with mild COVID-19 and could shorten the period of infectious viral shedding. This may be an important factor in preventing the spread of infection. It may be possible to revise the isolation period for patients with mild disease treated with REGN-CoV2.


Subject(s)
COVID-19 Drug Treatment , SARS-CoV-2 , Antibodies, Monoclonal, Humanized/therapeutic use , Antibodies, Neutralizing , Drug Combinations , Humans , RNA, Viral , Virus Shedding
18.
Front Pharmacol ; 13: 804103, 2022.
Article in English | MEDLINE | ID: mdl-35422704

ABSTRACT

Several traditional Japanese Kampo formulas are known to have inhibitory effects on infections with viruses that cause respiratory symptoms. Although some herbs and their components have been reported to suppress SARS-CoV-2 replication in vitro, it is difficult to compare effective Kampo formulas because of the different methods used in studies. Thus, we carried out in vitro experiments on the suppression of SARS-CoV-2 infection by Kampo formulas and crude drugs used for the common cold to compare their suppressive effects on virus infection. After infecting VeroE6/TMPRSS2 cells with SARS-CoV-2, lysates of the Kampo formulas and crude drugs were added, and after 24 h, the infectious titer in the medium was measured by the TCID50 method. Maoto was the most effective among the Kampo formulas, and Ephedrae herba was the most effective among the constituent crude drugs. However, a comparison of the suppressive effects of Ephedrae herba and Kampo formulas containing Ephedrae herba showed that the suppressive effect on virus infection did not depend on the content of Ephedrae herba. Based on the results, we believe that the use of Maoto among Kampo formulas is suitable as a countermeasure against COVID-19.

19.
Sci Rep ; 12(1): 2419, 2022 02 14.
Article in English | MEDLINE | ID: mdl-35165301

ABSTRACT

This study aimed to develop the feasible and effective universal screening strategy of the notable SARS-CoV-2 variants by Sanger Sequencing Strategy and then practically applied it for mass screening in Hiroshima, Japan. A total of 734 samples from COVID-19 confirmed cases in Hiroshima were screened for the notable SARS-CoV-2 variants (B.1.1.7, B.1.351, P.1, B.1.617.2, B.1.617.1, C.37, B.1.1.529, etc.). The targeted spike region is amplified by nested RT-PCR using in-house designed primer set hCoV-Spike-A and standard amplification protocol. Additionally, randomly selected 96 samples were also amplified using primer sets hCoV-Spike-B and hCoV-Spike-C. The negative amplified samples were repeated for second attempt of amplification by volume-up protocol. Thereafter, the amplified products were assigned for Sanger sequencing using corresponding primers. The positive amplification rate of primer set hCoV-Spike-A, hCoV-Spike-B and hCoV-Spike-C were 87.3%, 83.3% and 93.8% respectively for standard protocol and increased to 99.6%, 95.8% and 96.9% after second attempt by volume-up protocol. The readiness of genome sequences was 96.9%, 100% and 100% respectively. Among 48 mutant isolates, 26 were B.1.1.7 (Alpha), 7 were E484K single mutation and the rest were other types of mutation. Moreover, 5 cluster cases with single mutation at N501S were firstly reported in Hiroshima. This study indicates the reliability and effectiveness of Sanger sequencing to screen large number of samples for the notable SARS-CoV-2 variants. Compared to the Next Generation Sequencing (NGS), our method introduces the feasible, universally applicable, and practically useful tool for identification of the emerging variants with less expensive and time consuming especially in those countries where the NGS is not practically available. Our method allows not only to identify the pre-existing variants but also to examine other rare type of mutation or newly emerged variants and is crucial for prevention and control of pandemic.


Subject(s)
COVID-19/diagnosis , Mass Screening/methods , SARS-CoV-2/genetics , Sequence Analysis, DNA/methods , Spike Glycoprotein, Coronavirus/genetics , Amino Acid Sequence , COVID-19/epidemiology , COVID-19/virology , Feasibility Studies , High-Throughput Nucleotide Sequencing/methods , Humans , Japan/epidemiology , Pandemics/prevention & control , Reproducibility of Results , SARS-CoV-2/physiology , Sensitivity and Specificity , Sequence Homology, Amino Acid
20.
J Infect Chemother ; 28(1): 19-23, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34538728

ABSTRACT

BACKGROUND: Approximately 5% of patients with coronavirus disease (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 develop severe COVID-19. Severe COVID-19 requires respiratory management with mechanical ventilation and an extended period of treatment. Prolonged infectious virus shedding is a concern in severe COVID-19 cases, but few reports have examined the duration of infectious virus shedding. Therefore, we investigated the duration of infectious virus shedding in patients transferred to Hiroshima University Hospital with severe COVID-19 requiring mechanical ventilation. METHODS: Nasopharyngeal swab specimens were collected and analyzed using both viral culture and reverse transcriptase-quantitative polymerase chain reaction (RT-qPCR) tests between December 2020 and February 2021. RESULTS: Of the 23 patients tested, the proportions of those with positive test results at first specimen collection (the median number of days to first specimen collection after symptom onset was 10) on RT-qPCR and viral culture tests were 95·7% and 30·4%, respectively. All six patients with positive viral culture test results who were followed-up tested negative 24 days after symptom onset but remained positive on RT-qPCR. Viral loads based on PCR testing did not decrease over time, but those determined via culture tests decreased over time. The longest negative conversion time was observed in a dialysis patient on immunosuppressive drugs. CONCLUSIONS: This study indicated that patients with severe COVID-19 remain culture positive for ≥ 10 days after symptom onset. Additionally, immunosuppressed patients with severe COVID-19 could consider isolation for ≥ 20 days.


Subject(s)
COVID-19 , Humans , RNA, Viral/genetics , Respiration, Artificial , SARS-CoV-2 , Viral Load , Virus Shedding
SELECTION OF CITATIONS
SEARCH DETAIL
...