Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Pollut ; 349: 123907, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38582185

ABSTRACT

Although lead (Pb) poisoning in wild birds has been considered a serious problem in Japan for over 30 years, there is little information about Pb exposure and its sources throughout Japan except for Hokkaido. Furthermore, to identify and effectively prioritize the conservation needs of highly vulnerable species, differences in sensitivity to Pb exposure among avian species need to be determined. Therefore, we investigated the current situation of Pb exposure in raptors (13 species, N = 82), waterfowl (eight species, N = 44) and crows (one species, N = 6) using concentration and isotope analysis. We employed blood or tissue samples collected in various Japanese facilities mainly in 2022 or 2023. We also carried out a comparative study of blood δ-ALAD sensitivity to in vitro Pb exposure using blood of nine avian species. Pb concentrations in the blood or tissues displayed increased levels (>0.1 µg/g blood) in two raptors (2.4%), ten waterfowl (23%) and one crow (17%). Among them, poisoning levels (>0.6 µg/g blood) were found in one black kite and one common teal. The sources of Pb isotope ratios in ten blood samples with high Pb levels were determined as deriving from shot pellets (N = 9) or rifle bullets (N = 1). In the δ-ALAD study, red-crowned crane showed the highest sensitivity among the nine tested avian species and was followed in order by five Accipitriformes species (including white-tailed and Steller's sea eagle), Blakiston's fish owl, Muscovy duck and chicken, suggesting a genetically driven variance in susceptibility. Further studies on contamination conditions and exposure sources are urgently needed to inform strict regulations on the usage of Pb ammunition. Furthermore, detailed examinations of δ-ALAD sensitivity, interspecific differences, and other factors involved in the variability in sensitivity to Pb are required to identify and prioritize highly sensitive species.


Subject(s)
Birds , Environmental Pollutants , Lead , Raptors , Animals , Lead/blood , Lead/metabolism , Japan , Raptors/metabolism , Environmental Pollutants/blood , Birds/metabolism , Environmental Monitoring/methods , Lead Poisoning/veterinary , Environmental Exposure/statistics & numerical data , Crows
2.
Environ Pollut ; 341: 122837, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-37931675

ABSTRACT

Anticoagulant rodenticides (ARs) are used to control pest rodent species but can result in secondary poisoning of non-target animals, especially raptors. In the present study, differences in AR sensitivity among avian species were evaluated by comparing in vivo warfarin pharmacokinetics and effects, measuring cytochrome P450s (CYPs) expression involved in AR metabolism, and conducting in vitro inhibition assays of the AR target enzyme Vitamin K 2,3-epoxide reductase (VKOR). Oral administration of warfarin at 4 mg/kg body weight did not prolong prothrombin time in chickens (Gallus gallus), rock pigeons (Columba livia), or Eastern buzzards (Buteo japonicus). Rock pigeons and buzzards exhibited shorter plasma half-life of warfarin compared to chickens. For the metabolite analysis, 4'-hydroxywarfarin was predominantly detected in all birds, while 10-hydroxywarfarin was only found in pigeons and raptors, indicating interspecific differences in AR metabolism among birds likely due to differential expression of CYP enzymes involved in the metabolism of ARs and variation of VKOR activities among these avian species. The present findings, and results of our earlier investigations, demonstrate pronounced differences in AR sensitivity and pharmacokinetics among bird species, and in particular raptors. While ecological risk assessment and mitigation efforts for ARs have been extensive, AR exposure and adverse effects in predatory and scavenging wildlife continues. Toxicokinetic and toxicodynamic data will assist in such risk assessments and mitigation efforts.


Subject(s)
Falconiformes , Raptors , Rodenticides , Animals , Rodenticides/toxicity , Rodenticides/metabolism , Anticoagulants/toxicity , Anticoagulants/metabolism , Raptors/metabolism , Warfarin/metabolism , Columbidae/metabolism , Chickens/metabolism , Falconiformes/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...