Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters











Database
Language
Publication year range
1.
Food Chem ; 225: 167-174, 2017 Jun 15.
Article in English | MEDLINE | ID: mdl-28193411

ABSTRACT

The aim of this study was to develop a molecular technique to determine the level of human originated DNA contamination in unhygienic food products. In the study, four model foods were prepared under both hygienic (H) and non-hygienic (NH) conditions and the human originated microbial loads of these products were determined. DNA was extracted from the model foods and human buccal samples by GIDAGEN Multi-fast DNA isolation kit. A primer specific region of human mitochondrial D-Loop was designed. The level of human DNA contamination in the model foods was determined by real-time PCR. The sensitivity of the technique developed here was 0.00001ng DNA/PCR. In addition, the applicability of the traceable molecular hygiene control method (TMHCM) was tested in 60 food samples from the market. The results of this study demonstrate that DNA based TMHCM can be used to predict to what extent foods meet the human oriented hygienic conditions.


Subject(s)
DNA/chemistry , Food Contamination/analysis , Food Microbiology/methods , Food Safety/methods , Polymerase Chain Reaction/methods , Humans
2.
J Sci Food Agric ; 97(7): 2100-2106, 2017 May.
Article in English | MEDLINE | ID: mdl-27570232

ABSTRACT

BACKGROUND: Ionising radiation induces molecular alterations, such as formation of ions, free radicals, and new stable molecules, and cleavage of the chemical bonds of the molecules present in food. Irradiation-treated meat should be labelled to control the process and to ensure free consumer choice. Therefore, sensitive analytical methods are required to detect the irradiation dose. RESULTS: Meat samples were exposed to radiation doses of 0, 0.272, 0.497, 1.063, 3.64, 8.82 and 17.42 kGy in an industrial 60 Co gamma cell. Primers were designed to amplify 998, 498 and 250-base pair (bp) regions of the 18S rRNA gene of nuclear DNA from the irradiated samples. A new DNA-based method was developed to quantify the radiation exposed to the unstored meat and the meat stored at -20 °C for 3 and 6 months. The method was able to detect meat samples stored and unstored with dose limits of 1.063 and 3.64 kGy, respectively. CONCLUSION: The level of irradiation can be detected using primer pairs that target particularly different-sized sequences for DNA amplification by PCR. This method can be widely used for the analysis of not only meat samples, but also all biological materials containing DNA. © 2016 Society of Chemical Industry.


Subject(s)
Food Irradiation/adverse effects , Meat/radiation effects , Polymerase Chain Reaction/methods , Animals , Cattle/genetics , DNA/genetics , DNA Primers/genetics , Food Safety , Meat/analysis , Radiation, Ionizing
3.
J Food Sci Technol ; 53(5): 2492-6, 2016 May.
Article in English | MEDLINE | ID: mdl-27407216

ABSTRACT

Trout (Oncorhynchus mykiss) were irradiated at doses of 0.250, 0.500, 1, 3, 5, 7 and 9 kGy in gamma cell. DNAs were extracted from the irradiated samples before and after storage. 1ERP primers were designed, and RAPD-PCR (Randomly Polymorphic DNA-Polymerase Chain Reaction) was applied to make randomly amplifications on the DNA of the irradiated samples. Agarose gel profiles of irradiated fish were obtained to determine change of band profiles. In addition, DNA fragmentation occurring in each dose was determined by comet assay for the verification of methodology developed in this study. The molecular methodology was developed to estimate ionizing radiation (IR) level in irradiated fish. This methodology allows the analysis of the trout irradiated up to the dose limit of around 0.5 kGy and stored for a period of three months.

4.
Food Chem ; 182: 150-5, 2015 Sep 01.
Article in English | MEDLINE | ID: mdl-25842321

ABSTRACT

In this study, the effects of gamma irradiation on the DNA of fish (Oncorhynchus mykiss) by real-time PCR were studied. Fish (O. mykiss) were exposed to radiation doses of 0.250, 0.500, 1, 3, 5, 7, and 9 kGy in a gamma cell. Primers were designed for regions with different lengths of both nuclear and mitochondrial DNA, and each primer was used to amplify the DNA from irradiated samples. The amplicon curves for mitochondrial and nuclear DNA, and the correlations among the curves, were obtained. The Ct values for a 519 bp region of the 18S RNA gene on nuclear DNA correlated appropriately. Radiation doses applied to the fillets were estimated using the standard curve data obtained from the correlation values, and the DNA damage caused by each dose was calculated. As a consequence, a molecular methodology to analyze irradiated fish meat qualitatively and also for the estimation of administered dose was developed. This method allowed analysis of irradiated fish, which had been stored for up to 3 months with a dose limit of approximately 0.5 kGy.


Subject(s)
DNA Damage , DNA , Food Irradiation/methods , Gamma Rays , Meat/analysis , Animals , Comet Assay , Consumer Product Safety , DNA/genetics , DNA/radiation effects , DNA Primers/genetics , Dose-Response Relationship, Radiation , Food Storage , Oncorhynchus mykiss/microbiology , Real-Time Polymerase Chain Reaction
5.
Korean J Food Sci Anim Resour ; 35(3): 382-8, 2015.
Article in English | MEDLINE | ID: mdl-26761852

ABSTRACT

A duplex real-time polymerase chain reaction (PCR) based assay for the detection of porcine and horse meat in sausages was designed by using EvaGreen fluorescent dye. Primers were selected from mitochondrial 12S rRNA and 16S rRNA genes which are powerful regions for identification of horse and porcine meat. DNA from reference samples and industrial products was successfully extracted using the GIDAGEN® Multi-Fast DNA Isolation Kit. Genomes were identified based on their specific melting peaks (Mp) which are 82.5℃ and 78℃ for horse and porcine, respectively. The assay used in this study allowed the detection of as little as 0.0001% level of horse meat and 0.001% level of porcine meat in the experimental admixtures. These findings indicate that EvaGreen based duplex real-time PCR is a potentially sensitive, reliable, rapid and accurate assay for the detection of meat species adulterated with porcine and horse meats.

6.
Food Chem ; 141(2): 718-22, 2013 Nov 15.
Article in English | MEDLINE | ID: mdl-23790839

ABSTRACT

Practical and highly sensitive Sakalar quantification table of DNA (SQT-DNA) has been developed for the detection% of species-specific DNA amount in food products. Cycle threshold (Ct) data were obtained from multiple curves of real-time qPCR. The statistical analysis was done to estimate the concentration of standard dilutions. Amplicon concentrations versus each Ct value were assessed by the predictions of targets at known concentrations. SQT-DNA was prepared by using the percentage versus each Ct values. The applicability of SQT-DNA to commercial foods was proved by using sausages containing varying ratios of beef, chicken, and soybean. The results showed that SQT-DNA can be used to directly quantify food DNA by a single PCR without the need to construct a standart curve in parallel with the samples every time the experiment is performed, and also quantification by SQT-DNA is as reliable as standard curve quantification for a wide range of DNA concentrations.


Subject(s)
DNA/genetics , Food Contamination/analysis , Meat Products/analysis , Real-Time Polymerase Chain Reaction/standards , Animals , Cattle/genetics , Chickens/genetics , DNA/standards , Real-Time Polymerase Chain Reaction/methods , Glycine max/genetics
7.
J Food Sci ; 77(9): N40-4, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22900921

ABSTRACT

In this study, real-time polymerase chain reaction (PCR) was used for identifying the effects of different temperatures and times of heat treatment on the DNA of meat products. For this purpose, beef, pork, and chicken were baked at 200 °C for 10, 20, 30, 40, 50 min, and for 30 min at 30, 60, 90, 120, 150, 180, 210 °C and also cooked by boiling at 99 °C for 10, 30, 60, 90, 120, 150, 180, 210, and 240 min. The DNA was then extracted from all samples after the heat treatment. Further, a region of 374, 290, and 183-bp of mitochondrial DNA of beef, pork, and chicken, respectively, was amplified by real-time PCR. It was found that baking and boiling of the beef, pork, and chicken resulted in decreases in the detectable copy numbers of specific genes, which varied with the heating time and degree. The results indicated that species determination and quantification using real-time PCR are affected by the temperature, duration of the heat treatment, and size of the DNA fragment to be amplified.


Subject(s)
Cooking/methods , DNA, Mitochondrial/isolation & purification , Hot Temperature , Meat/analysis , Animals , Cattle , Chickens , DNA Fragmentation , DNA Primers , Real-Time Polymerase Chain Reaction , Swine
SELECTION OF CITATIONS
SEARCH DETAIL