Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
Faraday Discuss ; 248(0): 250-265, 2024 Jan 29.
Article in English | MEDLINE | ID: mdl-37743819

ABSTRACT

Lithium-metal solid-state batteries (LMSSBs) have garnered immense interest due to their potential to enhance safety and energy density compared to traditional Li-ion batteries. The anode-free approach to manufacturing Li-metal anodes could provide the additional benefit of reducing cost. However, a lack of understanding of the mechano-electrochemical behavior related to the cycling of in situ formed Li anodes remains a significant challenge. To bridge this knowledge gap, this work aims to understand the cycling behavior of in situ formed Li anodes on garnet Li7La3Zr2O12 (LLZO) solid-electrolyte as a function of the depth of discharge (DOD). The results of this study show that cycling in situ formed Li of 3 mA h cm-2 with a DOD of 66% leads to unstable cycling, while cycling with a DOD of 33% exhibits stable cycling. Furthermore, we observed interfacial deterioration and inhomogeneity of in situ formed Li anodes during cycling with a DOD of 66%. This study provides mechanistic insight into the factors that affect stable cycling that can help guide approaches to improve the cycling behavior of in situ formed Li anodes.

3.
Article in English | MEDLINE | ID: mdl-37906037

ABSTRACT

Conventional Li-S batteries rely on liquid electrolytes based on LiNO3/DOL/DME mixtures that produce a quasistable interface with the lithium anode. Electron pair donor (EPD) solvents, also known as high donor number solvents, provide much higher polysulfide solubility and close-to-ideal sulfur utilization, making them solvents of choice for lean electrolyte Li-S cells. However, their instability to reduction requires incorporation of an ion-conductive membrane that is stable with Li-such as garnet LLZO and also stable with sulfur/polysulfides. We report that even trace amounts of LiOH on a LLTZO surface trigger a complex reaction with sulfur dissolved in typical EPD solvents (i.e., N,N-dimethylacetamide, DMA) to produce a highly resistive impedance layer that quickly grows with time from 1000 to 10,000 Ω cm2 over a few hours, thus impeding Li+ transport across the interface. Decorating the LLZO with protective phosphate groups to produce a modified surface provides a very low charge-transfer resistance of 40 Ω cm2 that is maintained over time and inhibits the reaction of LiOH and dissolved sulfur. Hybrid liquid-solid electrolyte cells constructed on this concept result in a high sulfur utilization of 1400 mAh g-1 which is 85% of theoretical and remains constant over cycling even with conventional, unoptimized carbon/sulfur cathodes.

4.
ACS Appl Mater Interfaces ; 14(17): 19332-19341, 2022 May 04.
Article in English | MEDLINE | ID: mdl-35442617

ABSTRACT

Aqueous redox flow batteries (RFBs) are promising candidates for low-cost, grid-scale energy storage. However, the polymer-based membranes that are used in most prototypical systems fail to prevent crossover of small-molecule reactants, which results in high rates of capacity fade. In this work, we explore the feasibility of a von Alpen sodium superionic conductor Na3.1Zr1.55Si2.3P0.7O11 (NaSICON) as an RFB membrane by examining its resistance, permeability, and interfacial morphology as a function of electrolyte composition and temperature. The resistance of NaSICON is stable for several weeks while immersed in neutral to strongly alkaline ([OH-] = 3 M) aqueous electrolytes, and its permeability to polysulfide-based and permanganate-based small-molecule RFB reactants is negligible compared to that of Nafion. The glassy phase of the NaSICON microstructure at the membrane-electrolyte interface is susceptible to some etching while in contact with aqueous electrolytes containing sodium ions. This etching becomes more extensive when potassium ions are present in the electrolyte, leading in certain instances to complete disintegration of the membrane. A ∼0.7 mm-thin NaSICON membrane can nevertheless support over three weeks of cycling of a ferrocyanide|permanganate flow cell in a strongly alkaline electrolyte ([OH-] = 3 M), with apparently negligible reactant crossover and very low capacity fade (<0.04%/day). NaSICON's area-specific resistance also decreases dramatically with increasing temperature and decreasing membrane thickness; there is a 5.6× reduction from a 1.19 mm-thick membrane at 18 °C (101 Ωcm2) to a 0.61 mm-thick one at 70 °C (18 Ωcm2). Lowering the thickness of the membrane to 0.1 mm or lower will result in power densities at above ambient temperatures that are comparable to power densities of polymer membrane-containing flow cells. This work highlights the promise of ceramic membranes as effective separators in RFBs operating under neutral pH to strongly alkaline pH conditions.

5.
Nat Commun ; 12(1): 6369, 2021 Nov 04.
Article in English | MEDLINE | ID: mdl-34737263

ABSTRACT

The dynamic behavior of the interface between the lithium metal electrode and a solid-state electrolyte plays a critical role in all-solid-state battery performance. The evolution of this interface throughout cycling involves multiscale mechanical and chemical heterogeneity at the micro- and nano-scale. These features are dependent on operating conditions such as current density and stack pressure. Here we report the coupling of operando acoustic transmission measurements with nuclear magnetic resonance spectroscopy and magnetic resonance imaging to correlate changes in interfacial mechanics (such as contact loss and crack formation) with the growth of lithium microstructures during cell cycling. Together, the techniques reveal the chemo-mechanical behavior that governs lithium metal and Li7La3Zr2O12 interfacial dynamics at various stack pressure regimes and with voltage polarization.

6.
Nat Mater ; 20(11): 1485-1490, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34059815

ABSTRACT

Solid electrolytes hold great promise for enabling the use of Li metal anodes. The main problem is that during cycling, Li can infiltrate along grain boundaries and cause short circuits, resulting in potentially catastrophic battery failure. At present, this phenomenon is not well understood. Here, through electron microscopy measurements on a representative system, Li7La3Zr2O12, we discover that Li infiltration in solid oxide electrolytes is strongly associated with local electronic band structure. About half of the Li7La3Zr2O12 grain boundaries were found to have a reduced bandgap, around 1-3 eV, making them potential channels for leakage current. Instead of combining with electrons at the cathode, Li+ ions are hence prematurely reduced by electrons at grain boundaries, forming local Li filaments. The eventual interconnection of these filaments results in a short circuit. Our discovery reveals that the grain-boundary electronic conductivity must be a primary concern for optimization in future solid-state battery design.

7.
Molecules ; 26(9)2021 Apr 30.
Article in English | MEDLINE | ID: mdl-33946368

ABSTRACT

Spinel-structured solids were studied to understand if fast Li+ ion conduction can be achieved with Li occupying multiple crystallographic sites of the structure to form a "Li-stuffed" spinel, and if the concept is applicable to prepare a high mixed electronic-ionic conductive, electrochemically active solid solution of the Li+ stuffed spinel with spinel-structured Li-ion battery electrodes. This could enable a single-phase fully solid electrode eliminating multi-phase interface incompatibility and impedance commonly observed in multi-phase solid electrolyte-cathode composites. Materials of composition Li1.25M(III)0.25TiO4, M(III) = Cr or Al were prepared through solid-state methods. The room-temperature bulk Li+-ion conductivity is 1.63 × 10-4 S cm-1 for the composition Li1.25Cr0.25Ti1.5O4. Addition of Li3BO3 (LBO) increases ionic and electronic conductivity reaching a bulk Li+ ion conductivity averaging 6.8 × 10-4 S cm-1, a total Li-ion conductivity averaging 4.2 × 10-4 S cm-1, and electronic conductivity averaging 3.8 × 10-4 S cm-1 for the composition Li1.25Cr0.25Ti1.5O4 with 1 wt. % LBO. An electrochemically active solid solution of Li1.25Cr0.25Mn1.5O4 and LiNi0.5Mn1.5O4 was prepared. This work proves that Li-stuffed spinels can achieve fast Li-ion conduction and that the concept is potentially useful to enable a single-phase fully solid electrode without interphase impedance.

9.
Nat Commun ; 11(1): 5201, 2020 Oct 15.
Article in English | MEDLINE | ID: mdl-33060571

ABSTRACT

The coupling of solid-state electrolytes with a Li-metal anode and state-of-the-art (SOA) cathode materials is a promising path to develop inherently safe batteries with high energy density (>1000 Wh L-1). However, integrating metallic Li with solid-electrolytes using scalable processes is not only challenging, but also adds extraneous volume since SOA cathodes are fully lithiated. Here we show the potential for "Li-free" battery manufacturing using the Li7La3Zr2O12 (LLZO) electrolyte. We demonstrate that Li-metal anodes >20 µm can be electroplated onto a current collector in situ without LLZO degradation and we propose a model to relate electrochemical and nucleation behavior. A full cell consisting of in situ formed Li, LLZO, and NCA is demonstrated, which exhibits stable cycling over 50 cycles with high Coulombic efficiencies. These findings demonstrate the viability of "Li-free" configurations using LLZO which may guide the design and manufacturing of high energy density solid-state batteries.

10.
ACS Appl Mater Interfaces ; 11(45): 42042-42048, 2019 Nov 13.
Article in English | MEDLINE | ID: mdl-31617998

ABSTRACT

Herein, we report on the characterization of a Li-S hybrid cell containing a garnet solid electrolyte (Li7La3Zr2O12, LLZO) and conventional liquid electrolyte. While the liquid electrolyte provided ionically conductive pathways throughout the porous cathode, the LLZO acted as a physical barrier to protect the Li metal anode and prevent polysulfide shuttling during battery operation. This hybrid cell exhibited an initial capacity of 1000 mAh/g(S) and high Coulombic efficiency (>99%). The interface between the liquid electrolyte and LLZO was studied using electrochemical impedance spectroscopy and X-ray photoelectron spectroscopy (XPS). These results indicate that a spontaneous interfacial reaction layer formed between the LLZO and liquid electrolyte. XPS depth profiling experiments indicate that this layer consisted of Li-enriched phases near the surface (e.g., Li2CO3) and intermediate Li-La-Zr oxides in subsurface regions. The reaction layer extended well beyond the LLZO surface, and bulk pristine LLZO was not observed even at the deepest sputtering depths used in this study (∼90 nm). Overall, these results highlight that developing stable electrode/electrolyte interfaces is critical for solid-state batteries and their hybrids.

11.
J Mech Behav Biomed Mater ; 91: 247-254, 2019 03.
Article in English | MEDLINE | ID: mdl-30597378

ABSTRACT

Peripheral nerve injury remains a large clinical problem, with challenges to the successful translation of nerve repair devices. One promising technology is the multichannel scaffold, a conduit incorporating arrays of linear microchannels, which has high open lumen volume to guide regenerating nerves toward distal targets. To maximize open lumen volume, and scale-up scaffolds for translation, this study explored how mechanical properties were affected by 1) material choice (poly(lactide co-glycolide) (PLGA) and poly(caprolactone) (PCL)), 2) microstructure (porous and non-porous), and 3) channel architecture (200 µm and 300 µm diameter). After testing in transverse compression and bending, it was noted that introduction of porosity and increasing microchannel diameter increased scaffold compliance from 0.05 ±â€¯0.1-2.75 ±â€¯0.8 mm/N. Porosity also increased flexibility and eliminated kinking, which could potentially damage regenerating nerves. Material choice determined both scaffold deformation and mechanics. Porous PLGA scaffolds were stiffer than porous PCL, with greater deformation. Having demonstrated stability and flexibility, porous PCL multichannel scaffolds were scaled from 1.5 mm to 10 mm in diameter, a range applicable to the clinic. Even at 10 mm in diameter, the linear structure, high open lumen volume and compliance were retained. This demonstrates significant progress towards translation and brings multichannel technology closer to the clinic.


Subject(s)
Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Mechanical Phenomena , Nerve Regeneration/drug effects , Humans , Peripheral Nerve Injuries/physiopathology , Polyesters/chemistry , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , Porosity , Tissue Scaffolds/chemistry
12.
Nat Med ; 25(2): 263-269, 2019 02.
Article in English | MEDLINE | ID: mdl-30643285

ABSTRACT

Current methods for bioprinting functional tissue lack appropriate biofabrication techniques to build complex 3D microarchitectures essential for guiding cell growth and promoting tissue maturation1. 3D printing of central nervous system (CNS) structures has not been accomplished, possibly owing to the complexity of CNS architecture. Here, we report the use of a microscale continuous projection printing method (µCPP) to create a complex CNS structure for regenerative medicine applications in the spinal cord. µCPP can print 3D biomimetic hydrogel scaffolds tailored to the dimensions of the rodent spinal cord in 1.6 s and is scalable to human spinal cord sizes and lesion geometries. We tested the ability of µCPP 3D-printed scaffolds loaded with neural progenitor cells (NPCs) to support axon regeneration and form new 'neural relays' across sites of complete spinal cord injury in vivo in rodents1,2. We find that injured host axons regenerate into 3D biomimetic scaffolds and synapse onto NPCs implanted into the device and that implanted NPCs in turn extend axons out of the scaffold and into the host spinal cord below the injury to restore synaptic transmission and significantly improve functional outcomes. Thus, 3D biomimetic scaffolds offer a means of enhancing CNS regeneration through precision medicine.


Subject(s)
Biomimetics , Nerve Regeneration , Printing, Three-Dimensional , Spinal Cord Injuries/therapy , Tissue Scaffolds/chemistry , Animals , Green Fluorescent Proteins/metabolism , Humans , Neural Stem Cells/metabolism , Neural Stem Cells/transplantation , Neural Stem Cells/ultrastructure , Rats
13.
ACS Appl Mater Interfaces ; 10(20): 17471-17479, 2018 May 23.
Article in English | MEDLINE | ID: mdl-29708721

ABSTRACT

Understanding ionic transport across interfaces between dissimilar materials and the intrinsic chemical stability of such interfaces is a fundamental challenge spanning many disciplines and is of particular importance for designing conductive and stable solid electrolytes for solid-state Li-ion batteries. In this work, we establish a surface science-based approach for assessing the intrinsic stability of oxide materials in contact with Li metal. Through a combination of experimental and computational insights, using Nb-doped SrTiO3 (Nb/STO) single crystals as a model system, we were able to understand the impact of crystallographic orientation and surface morphology on the extent of the chemical reactions that take place between surface Nb, Ti, and Sr upon reaction with Li. By expanding our approach to investigate the intrinsic stability of the technologically relevant, polycrystalline Nb-doped lithium lanthanum zirconium oxide (Li6.5La3Zr1.5Nb0.5O12) system, we found that this material reacts with Li metal through the reduction of Nb, similar to that observed for Nb/STO. These results clearly demonstrate the feasibility of our approach to assess the intrinsic (in)stability of oxide materials for solid-state batteries and point to new strategies for understanding the performance of such systems.

14.
J Biomed Mater Res A ; 105(12): 3392-3399, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28804998

ABSTRACT

Nerve repair in several mm-long nerve gaps often requires an interventional technology. Microchannel scaffolds have proven effective for bridging nerve gaps and guiding axons in the peripheral nervous system (PNS). Nonetheless, fabricating microchannel scaffolds at this length scale remains a challenge and/or is time consuming and cumbersome. In this work, a simple computer-aided microdrilling technique was used to fabricate 10 mm-long agarose scaffolds consisting of 300 µm-microchannels and 85 µm-thick walls in less than an hour. The agarose scaffolds alone, however, did not exhibit adequate stiffness and integrity to withstand the mechanical stresses during implantation and suturing. To provide mechanical support and enable suturing, poly caprolactone (PCL) conduits were fabricated and agarose scaffolds were placed inside. A modified salt-leaching technique was developed to introduce interconnected porosity in PCL conduits to allow for tuning of the mechanical properties such as elastic modulus and strain to failure. It was shown that the PCL conduits were effective in stabilizing the agarose scaffolds in 10 mm-long sciatic nerve gaps of rats for at least 8 weeks. Robust axon ingress and Schwann cell penetration were observed within the microchannel scaffolds without using growth factors. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 3392-3399, 2017.


Subject(s)
Guided Tissue Regeneration/methods , Hydrogel, Polyethylene Glycol Dimethacrylate/chemistry , Nerve Regeneration , Polyesters/chemistry , Sciatic Nerve/physiology , Sepharose/chemistry , Tissue Scaffolds/chemistry , Animals , Elastic Modulus , Male , Porosity , Rats, Sprague-Dawley , Schwann Cells/cytology , Sciatic Nerve/cytology , Sciatic Nerve/injuries
15.
Tissue Eng Part A ; 23(9-10): 415-425, 2017 05.
Article in English | MEDLINE | ID: mdl-28107810

ABSTRACT

The goal of this work was to design nerve guidance scaffolds with a unique architecture to maximize the open volume available for nerve growth. Polycaprolactone (PCL) was selected as the scaffold material based on its biocompatibility and month-long degradation. Yet, dense PCL does not exhibit suitable properties such as porosity, stiffness, strength, and cell adhesion to function as an effective nerve guidance scaffold. To address these shortcomings, PCL was processed using a modified salt-leaching technique to create uniquely controlled interconnected porosity. By controlling porosity, we demonstrated that the elastic modulus could be controlled between 2.09 and 182.1 MPa. In addition, introducing porosity and/or coating with fibronectin enhanced the PCL cell attachment properties. To produce PCL scaffolds with maximized open volume, porous PCL microtubes were fabricated and translated into scaffolds with 60 volume percent open volume. The scaffolds were tested in transected rat spinal cords. Linear axon growth within both the microtubes as well as the interstitial space between the tubes was observed, demonstrating that the entire open volume of the scaffold was available for nerve growth. Overall, a novel scaffold architecture and fabrication technique are presented. The scaffolds exhibit significantly higher volume than state-of-the-art scaffolds for promising spinal cord nerve repair.


Subject(s)
Axons/metabolism , Polyesters/chemistry , Spinal Cord Injuries/therapy , Tissue Scaffolds/chemistry , Animals , Axons/pathology , Female , Mice , NIH 3T3 Cells , Porosity , Rats , Rats, Inbred F344 , Spinal Cord Injuries/metabolism
16.
Nano Lett ; 16(11): 7030-7036, 2016 11 09.
Article in English | MEDLINE | ID: mdl-27709954

ABSTRACT

Despite their different chemistries, novel energy-storage systems, e.g., Li-air, Li-S, all-solid-state Li batteries, etc., face one critical challenge of forming a conductive and stable interface between Li metal and a solid electrolyte. An accurate understanding of the formation mechanism and the exact structure and chemistry of the rarely existing benign interfaces, such as the Li-cubic-Li7-3xAlxLa3Zr2O12 (c-LLZO) interface, is crucial for enabling the use of Li metal anodes. Due to spatial confinement and structural and chemical complications, current investigations are largely limited to theoretical calculations. Here, through an in situ formation of Li-c-LLZO interfaces inside an aberration-corrected scanning transmission electron microscope, we successfully reveal the interfacial chemical and structural progression. Upon contact with Li metal, the LLZO surface is reduced, which is accompanied by the simultaneous implantation of Li+, resulting in a tetragonal-like LLZO interphase that stabilizes at an extremely small thickness of around five unit cells. This interphase effectively prevented further interfacial reactions without compromising the ionic conductivity. Although the cubic-to-tetragonal transition is typically undesired during LLZO synthesis, the similar structural change was found to be the likely key to the observed benign interface. These insights provide a new perspective for designing Li-solid electrolyte interfaces that can enable the use of Li metal anodes in next-generation batteries.

17.
J Neural Eng ; 13(6): 066011, 2016 12.
Article in English | MEDLINE | ID: mdl-27762235

ABSTRACT

OBJECTIVE: We combined implantation of multi-channel templated agarose scaffolds with growth factor gene delivery to examine whether this combinatorial treatment can enhance peripheral axonal regeneration through long sciatic nerve gaps. APPROACH: 15 mm long scaffolds were templated into highly organized, strictly linear channels, mimicking the linear organization of natural nerves into fascicles of related function. Scaffolds were filled with syngeneic bone marrow stromal cells (MSCs) secreting the growth factor brain derived neurotrophic factor (BDNF), and lentiviral vectors expressing BDNF were injected into the sciatic nerve segment distal to the scaffold implantation site. MAIN RESULTS: Twelve weeks after injury, scaffolds supported highly linear regeneration of host axons across the 15 mm lesion gap. The incorporation of BDNF-secreting cells into scaffolds significantly increased axonal regeneration, and additional injection of viral vectors expressing BDNF into the distal segment of the transected nerve significantly enhanced axonal regeneration beyond the lesion. SIGNIFICANCE: Combinatorial treatment with multichannel bioengineered scaffolds and distal growth factor delivery significantly improves peripheral nerve repair, rivaling the gold standard of autografts.


Subject(s)
Brain-Derived Neurotrophic Factor/genetics , Gene Transfer Techniques , Nerve Regeneration/genetics , Nerve Regeneration/physiology , Peripheral Nerves/physiology , Animals , Axons/physiology , Bioengineering , Bone Marrow Cells/metabolism , Bone Marrow Transplantation , Genetic Vectors , Male , Materials Testing , Rats , Rats, Inbred F344 , Schwann Cells/transplantation , Sciatic Nerve/metabolism , Sepharose/chemistry , Tissue Scaffolds
18.
ACS Biomater Sci Eng ; 2(4): 508-516, 2016 Apr 11.
Article in English | MEDLINE | ID: mdl-30035211

ABSTRACT

Tissue engineered scaffolds (TES) hold promise for improving the outcome of cell-based therapeutic strategies for a variety of biomedical scenarios, including musculoskeletal injuries, soft tissue repair, and spinal cord injury. Key to TES research and development, and clinical use, is the ability to longitudinally monitor TES location, orientation, integrity, and microstructure following implantation. Here, we describe a strategy for using microcomputed tomography (microCT) to visualize TES following implantation into mice. TES were doped with highly radiopaque gadolinium oxide nanocrystals and were implanted into the hind limbs of mice. Mice underwent serial microCT over 23 weeks. TES were clearly visible over the entire time course. Alginate scaffolds underwent a 20% volume reduction over the first 6 weeks, stabilizing over the next 17 weeks. Agarose scaffold volumes were unchanged. TES attenuation was also unchanged over the entire time course, indicating a lack of nanocrystal dissolution or leakage. Histology at the implant site showed the presence of very mild inflammation, typical for a mild foreign body reaction. Blood work indicated marked elevation in liver enzymes, and hematology measured significant reduction in white blood cell counts. While extrapolation of the X-ray induced effects on hematopoiesis in these mice to humans is not straightforward, clearly this is an area for careful monitoring. Taken together, these data lend strong support that doping TES with radiopaque nanocrystals and performing microCT imaging, represents a possible strategy for enabling serial in vivo monitoring of TES.

19.
Carbohydr Polym ; 103: 377-84, 2014 Mar 15.
Article in English | MEDLINE | ID: mdl-24528743

ABSTRACT

Recent work demonstrated the efficacy of combining layer-by-layer assembly with hydrogels to provide the controlled delivery of proteins for use in nerve repair scaffolds. In this work, we augmented the protein dose response by controlling and increasing the hydrogel internal surface area. Sucrose was added to agarose during gelation to homogenize the nanopore morphology, resulting in increased surface area per unit volume of hydrogel. The surface area of a range of compositions (1.5-5.0 wt% agarose and 0, 50 and 65 wt% sucrose) was measured. Gels were supercritically dried to preserve porosity enabling detailed pore morphology measurements using nitrogen adsorption and high resolution scanning electron microscopy. The resulting surface area, normalized by superficial gel volume, ranged between 6m(2)/cm(3)gel and 56 m(2)/cm(3)gel. Using the layer-by-layer process to load lysozyme, a neurotrophic factor analog, a relationship was observed between surface area and cumulative dose response ranging from 176 to 2556 µg/mL, which is in the range of clinical relevance for the delivery of growth factors. In this work, we demonstrated that the ability to control porosity is key in tuning drug delivery dose response from layer-by-layer modified hydrogels.


Subject(s)
Hydrogels/chemistry , Proteins/chemistry , Sepharose/chemistry , Particle Size , Surface Properties
20.
Nanotechnology ; 24(42): 424005, 2013 Oct 25.
Article in English | MEDLINE | ID: mdl-24067448

ABSTRACT

A solution-based process was investigated for synthesizing cubic Li7La3Zr2O12 (LLZO), which is known to exhibit the unprecedented combination of fast ionic conductivity, and stability in air and against Li. Sol-gel chemistry was developed to prepare solid metal-oxide networks consisting of 10 nm cross-links that formed the cubic LLZO phase at 600 ° C. Sol-gel LLZO powders were sintered into 96% dense pellets using an induction hot press that applied pressure while heating. After sintering, the average LLZO grain size was 260 nm, which is 13 times smaller compared to LLZO prepared using a solid-state technique. The total ionic conductivity was 0.4 mS cm(-1) at 298 K, which is the same as solid-state synthesized LLZO. Interestingly, despite the same room temperature conductivity, the sol-gel LLZO total activation energy is 0.41 eV, which 1.6 times higher than that observed in solid-state LLZO (0.26 eV). We believe the nano-scale grain boundaries give rise to unique transport phenomena that are more sensitive to temperature when compared to the conventional solid-state LLZO.

SELECTION OF CITATIONS
SEARCH DETAIL
...