Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 124
Filter
1.
Curr Oncol Rep ; 26(3): 250-257, 2024 03.
Article in English | MEDLINE | ID: mdl-38340217

ABSTRACT

PURPOSE OF REVIEW: The purpose of this review is to summarize the most updated treatment recommendations for pediatric CML, and to discuss current areas of investigation. RECENT FINDINGS: There is new phase 1 data to support the safety of the non-ATP competitive tyrosine kinase inhibitor (TKI) asciminib in the pediatric cohort. Ongoing studies are investigating the role of treatment-free remission in children. Chronic phase CML in children is managed with lifelong TKI therapy; however, evidence of deeper remissions sustained with second-generation TKIs may permit shorter treatment courses. Use of more specific TKIs may mitigate some of the side effects specific to the pediatric cohort. Children with advanced phase CML should achieve a complete hematologic remission with use of a second-generation TKI prior to transplant to achieve the best outcome.


Subject(s)
Leukemia, Myelogenous, Chronic, BCR-ABL Positive , Leukemia, Myeloid , Humans , Child , Fusion Proteins, bcr-abl/genetics , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics , Protein Kinase Inhibitors/therapeutic use
2.
Cancers (Basel) ; 15(21)2023 Oct 29.
Article in English | MEDLINE | ID: mdl-37958378

ABSTRACT

Juvenile myelomonocytic leukemia (JMML) is a deadly pediatric leukemia driven by RAS pathway mutations, of which >35% are gain-of-function in PTPN11. Although DNA hypermethylation portends severe clinical phenotypes, the landscape of histone modifications and chromatin profiles in JMML patient cells have not been explored. Using global mass cytometry, Epigenetic Time of Flight (EpiTOF), we analyzed hematopoietic stem and progenitor cells (HSPCs) from five JMML patients with PTPN11 mutations. These data revealed statistically significant changes in histone methylation, phosphorylation, and acetylation marks that were unique to JMML HSPCs when compared with healthy controls. Consistent with these data, assay for transposase-accessible chromatin with sequencing (ATAC-seq) analysis revealed significant alterations in chromatin profiles at loci encoding post-translational modification enzymes, strongly suggesting their mis-regulated expression. Collectively, this study reveals histone modification pathways as an additional epigenetic abnormality in JMML patient HSPCs, thereby uncovering a new family of potential druggable targets for the treatment of JMML.

3.
Appl Environ Microbiol ; 89(7): e0058323, 2023 07 26.
Article in English | MEDLINE | ID: mdl-37404180

ABSTRACT

Microbial source tracking (MST) identifies sources of fecal contamination in the environment using host-associated fecal markers. While there are numerous bacterial MST markers that can be used herein, there are few such viral markers. Here, we designed and tested novel viral MST markers based on tomato brown rugose fruit virus (ToBRFV) genomes. We assembled eight nearly complete genomes of ToBRFV from wastewater and stool samples from the San Francisco Bay Area in the United States. Next, we developed two novel probe-based reverse transcription-PCR (RT-PCR) assays based on conserved regions of the ToBRFV genome and tested the markers' sensitivities and specificities using human and non-human animal stool as well as wastewater. The ToBRFV markers are sensitive and specific; in human stool and wastewater, they are more prevalent and abundant than a commonly used viral marker, the pepper mild mottle virus (PMMoV) coat protein (CP) gene. We used the assays to detect fecal contamination in urban stormwater samples and found that the ToBRFV markers matched cross-assembly phage (crAssphage), an established viral MST marker, in prevalence across samples. Taken together, these results indicate that ToBRFV is a promising viral human-associated MST marker. IMPORTANCE Human exposure to fecal contamination in the environment can cause transmission of infectious diseases. Microbial source tracking (MST) can identify sources of fecal contamination so that contamination can be remediated and human exposures can be reduced. MST requires the use of host-associated MST markers. Here, we designed and tested novel MST markers from genomes of tomato brown rugose fruit virus (ToBRFV). The markers are sensitive and specific to human stool and highly abundant in human stool and wastewater samples.


Subject(s)
Solanum lycopersicum , Wastewater , Animals , Fruit , Biomarkers , Feces/microbiology , Environmental Monitoring/methods
4.
J Immunother Cancer ; 11(5)2023 05.
Article in English | MEDLINE | ID: mdl-37217248

ABSTRACT

BACKGROUND: Type I interferons (IFN-Is), secreted by hematopoietic cells, drive immune surveillance of solid tumors. However, the mechanisms of suppression of IFN-I-driven immune responses in hematopoietic malignancies including B-cell acute lymphoblastic leukemia (B-ALL) are unknown. METHODS: Using high-dimensional cytometry, we delineate the defects in IFN-I production and IFN-I-driven immune responses in high-grade primary human and mouse B-ALLs. We develop natural killer (NK) cells as therapies to counter the intrinsic suppression of IFN-I production in B-ALL. RESULTS: We find that high expression of IFN-I signaling genes predicts favorable clinical outcome in patients with B-ALL, underscoring the importance of the IFN-I pathway in this malignancy. We show that human and mouse B-ALL microenvironments harbor an intrinsic defect in paracrine (plasmacytoid dendritic cell) and/or autocrine (B-cell) IFN-I production and IFN-I-driven immune responses. Reduced IFN-I production is sufficient for suppressing the immune system and promoting leukemia development in mice prone to MYC-driven B-ALL. Among anti-leukemia immune subsets, suppression of IFN-I production most markedly lowers the transcription of IL-15 and reduces NK-cell number and effector maturation in B-ALL microenvironments. Adoptive transfer of healthy NK cells significantly prolongs survival of overt ALL-bearing transgenic mice. Administration of IFN-Is to B-ALL-prone mice reduces leukemia progression and increases the frequencies of total NK and NK-cell effectors in circulation. Ex vivo treatment of malignant and non-malignant immune cells in primary mouse B-ALL microenvironments with IFN-Is fully restores proximal IFN-I signaling and partially restores IL-15 production. In B-ALL patients, the suppression of IL-15 is the most severe in difficult-to-treat subtypes with MYC overexpression. MYC overexpression promotes sensitivity of B-ALL to NK cell-mediated killing. To counter the suppressed IFN-I-induced IL-15 production in MYChigh human B-ALL, we CRISPRa-engineered a novel human NK-cell line that secretes IL-15. CRISPRa IL-15-secreting human NK cells kill high-grade human B-ALL in vitro and block leukemia progression in vivo more effectively than NK cells that do not produce IL-15. CONCLUSION: We find that restoration of the intrinsically suppressed IFN-I production in B-ALL underlies the therapeutic efficacy of IL-15-producing NK cells and that such NK cells represent an attractive therapeutic solution for the problem of drugging MYC in high-grade B-ALL.


Subject(s)
Burkitt Lymphoma , Interferon Type I , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Humans , Mice , Animals , Interferon-gamma/metabolism , Interleukin-15/metabolism , Killer Cells, Natural , Burkitt Lymphoma/pathology , Mice, Transgenic , Interferon Type I/metabolism , Precursor Cell Lymphoblastic Leukemia-Lymphoma/pathology , Tumor Microenvironment
5.
Stem Cells ; 41(6): 560-569, 2023 06 15.
Article in English | MEDLINE | ID: mdl-36987811

ABSTRACT

Diamond Blackfan anemia (DBA) is an inherited bone marrow failure syndrome associated with severe anemia, congenital malformations, and an increased risk of developing cancer. The chromatin-binding special AT-rich sequence-binding protein-1 (SATB1) is downregulated in megakaryocyte/erythroid progenitors (MEPs) in patients and cell models of DBA, leading to a reduction in MEP expansion. Here we demonstrate that SATB1 expression is required for the upregulation of the critical erythroid factors heat shock protein 70 (HSP70) and GATA1 which accompanies MEP differentiation. SATB1 binding to specific sites surrounding the HSP70 genes promotes chromatin loops that are required for the induction of HSP70, which, in turn, promotes GATA1 induction. This demonstrates that SATB1, although gradually downregulated during myelopoiesis, maintains a biological function in early myeloid progenitors.


Subject(s)
Anemia, Diamond-Blackfan , Matrix Attachment Region Binding Proteins , Humans , Matrix Attachment Region Binding Proteins/genetics , Matrix Attachment Region Binding Proteins/metabolism , Megakaryocytes/metabolism , HSP70 Heat-Shock Proteins/genetics , HSP70 Heat-Shock Proteins/metabolism , Cell Differentiation/genetics , Transcription Factors/metabolism , Anemia, Diamond-Blackfan/metabolism , Chromatin/metabolism , GATA1 Transcription Factor/genetics , GATA1 Transcription Factor/metabolism
6.
bioRxiv ; 2023 Jan 10.
Article in English | MEDLINE | ID: mdl-36712100

ABSTRACT

Microbial source tracking (MST) identifies sources of fecal contamination in the environment using fecal host-associated markers. While there are numerous bacterial MST markers, there are few viral markers. Here we design and test novel viral MST markers based on tomato brown rugose fruit virus (ToBRFV) genomes. We assembled eight nearly complete genomes of ToBRFV from wastewater and stool samples from the San Francisco Bay Area in the United States of America. Next, we developed two novel probe-based RT-PCR assays based on conserved regions of the ToBRFV genome, and tested the markers’ sensitivities and specificities using human and non-human animal stool as well as wastewater. TheToBRFV markers are sensitive and specific; in human stool and wastewater, they are more prevalent and abundant than a currently used marker, the pepper mild mottle virus (PMMoV) coat protein (CP) gene. We applied the assays to detect fecal contamination in urban stormwater samples and found that the ToBRFV markers matched cross-assembly phage (crAssphage), an established viral MST marker, in prevalence across samples. Taken together, ToBRFV is a promising viral human-associated MST marker. Importance: Human exposure to fecal contamination in the environment can cause transmission of infectious diseases. Microbial source tracking (MST) can identify sources of fecal contamination so that contamination can be remediated and human exposures can be reduced. MST requires the use of fecal host-associated MST markers. Here we design and test novel MST markers from genomes of tomato brown rugose fruit virus (ToBRFV). The markers are sensitive and specific to human stool, and highly abundant in human stool and wastewater samples.

7.
Pediatr Blood Cancer ; 70(4): e30127, 2023 04.
Article in English | MEDLINE | ID: mdl-36495252

ABSTRACT

The American Society of Pediatric Hematology/Oncology (ASPHO) conducted a workshop "Can you hear me now? Cultivating a culture of respect, value, and appreciation within pediatric hematology/oncology" at their annual meeting in May 2022 in hopes of exploring how the members can enhance wellness in a climate of increasing diversity. Initiatives in the past have focused on personal care, but it has been widely shown that administrative and institutional driven initiatives are essential to create an environment of wellness. In this interactive workshop, we discovered that 22% of participants felt their institution does not instill a culture of respect. We offered tools to the audience on multiple levels: graceful self-promotion, diversity and inclusion, and leadership perspective on creating a culture of respect to address the individual, local community, and top-down leadership approaches. Here, we offer a summary on the content of the workshop, and expand upon many of the discussion points that were raised during the workshop. We bring forth novel information on each topic individually from diverse points of view, specific to the field of pediatric hematology/oncology (PHO). We aim to highlight the importance of creating a diverse and respectful work environment in PHO in hopes of ensuring motivated, satisfied, and fulfilled healthcare providers who feel appreciated and valued.


Subject(s)
Hematology , Humans , Child , Medical Oncology , Personal Satisfaction , Self Care , Health Personnel
8.
Haematologica ; 108(5): 1222-1231, 2023 05 01.
Article in English | MEDLINE | ID: mdl-36384250

ABSTRACT

Diamond-Blackfan anemia (DBA) is a ribosomopathy that is characterized by macrocytic anemia, congenital malformations, and early onset during childhood. Genetic studies have demonstrated that most patients carry mutations in one of the 20 related genes, most of which encode ribosomal proteins (RP). Treatment of DBA includes corticosteroid therapy, chronic red blood cell transfusion, and other forms of immunosuppression. Currently, hematopoietic stem cell transplantation is the only cure for DBA. Interestingly, spontaneous remissions occur in 10-20% of transfusion-dependent DBA patients. However, there is no consistent association between specific mutations and clinical manifestations. In the past decades, researchers have made significant progress in understanding the pathogenesis of DBA, but it remains unclear how the ubiquitous RP haploinsufficiency causes the erythroid-specific defect in hematopoiesis in DBA patients, and why there is a difference in penetrance and spontaneous remission among individuals who carry identical mutations. In this paper, we provide a comprehensive review of the development of DBA animal models and discuss the future research directions for these important experimental systems.


Subject(s)
Anemia, Diamond-Blackfan , Animals , Anemia, Diamond-Blackfan/genetics , Ribosomal Proteins/genetics , Mutation , Models, Animal , Hematopoiesis
9.
Front Oncol ; 12: 1033993, 2022.
Article in English | MEDLINE | ID: mdl-36523979

ABSTRACT

Clinical pathways are evidence-based tools that have been integrated into many aspects of pediatric hospital medicine and have proven effective at reducing in-hospital complications from a variety of diseases. Adaptation of similar tools for specific, high-risk patient populations in pediatric oncology has been slower, in part due to patient complexities and variations in management strategies. There are few published studies of clinical pathways for pediatric oncology patients. Pediatric patients with a new diagnosis of leukemia or lymphoma often present with one or more "oncologic emergencies" that require urgent intervention and deliberate multidisciplinary care to prevent significant consequences. Here, we present two clinical pathways that have recently been developed using a multidisciplinary approach at a single institution, intended for the care of patients who present with hyperleukocytosis or an anterior mediastinal mass. These clinical care pathways have provided a critical framework for the immediate care of these patients who are often admitted to the pediatric intensive care unit for initial management. The goal of the pathways is to facilitate multidisciplinary collaborations, expedite diagnosis, and streamline timely treatment initiation. Standardizing the care of high-risk pediatric oncology patients will ultimately decrease morbidity and mortality associated with these diseases to increase the potential for excellent outcomes.

10.
Curr Hematol Malig Rep ; 17(5): 121-126, 2022 10.
Article in English | MEDLINE | ID: mdl-35920965

ABSTRACT

PURPOSE OF REVIEW: Due to lack of pediatric-specific data, the management of chronic myeloid leukemia (CML) in pediatric, adolescents, and young adults is guided by adult CML evidence-based recommendations. Pediatric CML presents differently than adult CML and is often a more aggressive disease with different biological and host factors, yet there is sparse literature on how to address those differences. RECENT FINDINGS: Over the past two decades, tyrosine kinase inhibitors (TKIs) have changed the way CML is treated. There are currently three FDA-approved TKIs (imatinib, dasatinib, and nilotinib) for pediatric patients. When choosing which TKI to begin treatment with, there are many factors that should be considered on a case-to-case basis to obtain optimal outcomes. The safety profiles for long-term TKI use in pediatrics require further study. Unlike adults, children are still actively growing during TKI use, and the effect on development can be detrimental. TKI therapy is not recommended during pregnancy with variable but significant risk of fetal abnormalities and miscarriage, warranting counseling for young female patients prior to beginning TKIs. Attempts for treatment-free remission (TFR) by planned TKI cessation in eligible adult patients in deep and sustained molecular remission are now done as a standard of practice. However, data is sparse in the pediatric population. There is currently an ongoing Children's Oncology Group (COG) study to determine the feasibility of TFR as a treatment goal. Further research and additional pediatric trials are needed to characterize the unique aspects of CML in children and adolescents and optimize outcomes.


Subject(s)
Leukemia, Myelogenous, Chronic, BCR-ABL Positive , Protein Kinase Inhibitors , Adolescent , Child , Dasatinib/adverse effects , Female , Humans , Imatinib Mesylate , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/diagnosis , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , Protein Kinase Inhibitors/adverse effects , Young Adult
11.
Exp Hematol ; 111: 66-78, 2022 07.
Article in English | MEDLINE | ID: mdl-35460833

ABSTRACT

Diamond-Blackfan Anemia (DBA) is an inherited bone marrow failure syndrome that is associated with anemia, congenital anomalies, and cancer predisposition. It is categorized as a ribosomopathy, because more than 80% or patients have haploinsufficiency of either a small or large subunit-associated ribosomal protein (RP). The erythroid pathology is due predominantly to a block and delay in early committed erythropoiesis with reduced megakaryocyte/erythroid progenitors (MEPs). To understand the molecular pathways leading to pathogenesis of DBA, we performed RNA sequencing on mRNA and miRNA from RPS19-deficient human hematopoietic stem and progenitor cells (HSPCs) and compared existing database documenting transcript fluctuations across stages of early normal erythropoiesis. We determined the chromatin regulator, SATB1 was prematurely downregulated through the coordinated action of upregulated miR-34 and miR-30 during differentiation in ribosomal insufficiency. Restoration of SATB1 rescued MEP expansion, leading to a modest improvement in erythroid and megakaryocyte expansion in RPS19 insufficiency. However, SATB1 expression did not affect expansion of committed erythroid progenitors, indicating ribosomal insufficiency affects multiple stages during erythroid differentiation.


Subject(s)
Anemia, Diamond-Blackfan , Erythropoiesis , Matrix Attachment Region Binding Proteins , MicroRNAs , Anemia, Diamond-Blackfan/pathology , Down-Regulation , Erythropoiesis/genetics , Hematopoietic Stem Cells , Humans , Matrix Attachment Region Binding Proteins/genetics , Matrix Attachment Region Binding Proteins/metabolism , Megakaryocytes/cytology , MicroRNAs/genetics , Ribosomal Proteins
12.
ACS Cent Sci ; 8(2): 214-222, 2022 Feb 23.
Article in English | MEDLINE | ID: mdl-35233453

ABSTRACT

Cryogenic electron microscopy (cryo-EM) has emerged as a viable structural tool for molecular therapeutics development against human diseases. However, it remains a challenge to determine structures of proteins that are flexible and smaller than 30 kDa. The 11 kDa KIX domain of CREB-binding protein (CBP), a potential therapeutic target for acute myeloid leukemia and other cancers, is a protein which has defied structure-based inhibitor design. Here, we develop an experimental approach to overcome the size limitation by engineering a protein double-shell to sandwich the KIX domain between apoferritin as the inner shell and maltose-binding protein as the outer shell. To assist homogeneous orientations of the target, disulfide bonds are introduced at the target-apoferritin interface, resulting in a cryo-EM structure at 2.6 Å resolution. We used molecular dynamics simulations to design peptides that block the interaction of the KIX domain of CBP with the intrinsically disordered pKID domain of CREB. The double-shell design allows for fluorescence polarization assays confirming the binding between the KIX domain in the double-shell and these interacting peptides. Further cryo-EM analysis reveals a helix-helix interaction between a single KIX helix and the best peptide, providing a possible strategy for developments of next-generation inhibitors.

13.
Nat Commun ; 13(1): 934, 2022 02 17.
Article in English | MEDLINE | ID: mdl-35177627

ABSTRACT

The increasing use of mass cytometry for analyzing clinical samples offers the possibility to perform comparative analyses across public datasets. However, challenges in batch normalization and data integration limit the comparison of datasets not intended to be analyzed together. Here, we present a data integration strategy, CytofIn, using generalized anchors to integrate mass cytometry datasets from the public domain. We show that low-variance controls, such as healthy samples and stable channels, are inherently homogeneous, robust against stimulation, and can serve as generalized anchors for batch correction. Single-cell quantification comparing mass cytometry data from 989 leukemia files pre- and post normalization with CytofIn demonstrates effective batch correction while recapitulating the gold-standard bead normalization. CytofIn integration of public cancer datasets enabled the comparison of immune features across histologies and treatments. We demonstrate the ability to integrate public datasets without necessitating identical control samples or bead standards for fast and robust analysis using CytofIn.


Subject(s)
Algorithms , Datasets as Topic , Flow Cytometry/methods , Melanoma/drug therapy , Computational Biology/methods , Humans , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , Lymphocytes, Tumor-Infiltrating/drug effects , Lymphocytes, Tumor-Infiltrating/immunology , Melanoma/immunology , Melanoma/pathology , Neoplasms/drug therapy , Neoplasms/immunology , Neoplasms/pathology , Single-Cell Analysis , Skin Neoplasms/drug therapy , Skin Neoplasms/immunology , Skin Neoplasms/pathology
14.
Cancers (Basel) ; 14(3)2022 Feb 01.
Article in English | MEDLINE | ID: mdl-35159023

ABSTRACT

A molecular systems architecture is presented for acute myeloid leukemia (AML) to provide a framework for organizing the complexity of biomolecular interactions. AML is a multifactorial disease resulting from impaired differentiation and increased proliferation of hematopoietic precursor cells involving genetic mutations, signaling pathways related to the cancer cell genetics, and molecular interactions between the cancer cell and the tumor microenvironment, including endothelial cells, fibroblasts, myeloid-derived suppressor cells, bone marrow stromal cells, and immune cells (e.g., T-regs, T-helper 1 cells, T-helper 17 cells, T-effector cells, natural killer cells, and dendritic cells). This molecular systems architecture provides a layered understanding of intra- and inter-cellular interactions in the AML cancer cell and the cells in the stromal microenvironment. The molecular systems architecture may be utilized for target identification and the discovery of single and combination therapeutics and strategies to treat AML.

15.
Cancer Cell ; 40(1): 53-69.e9, 2022 01 10.
Article in English | MEDLINE | ID: mdl-34971569

ABSTRACT

Pediatric cancers often mimic fetal tissues and express proteins normally silenced postnatally that could serve as immune targets. We developed T cells expressing chimeric antigen receptors (CARs) targeting glypican-2 (GPC2), a fetal antigen expressed on neuroblastoma (NB) and several other solid tumors. CARs engineered using standard designs control NBs with transgenic GPC2 overexpression, but not those expressing clinically relevant GPC2 site density (∼5,000 molecules/cell, range 1-6 × 103). Iterative engineering of transmembrane (TM) and co-stimulatory domains plus overexpression of c-Jun lowered the GPC2-CAR antigen density threshold, enabling potent and durable eradication of NBs expressing clinically relevant GPC2 antigen density, without toxicity. These studies highlight the critical interplay between CAR design and antigen density threshold, demonstrate potent efficacy and safety of a lead GPC2-CAR candidate suitable for clinical testing, and credential oncofetal antigens as a promising class of targets for CAR T cell therapy of solid tumors.


Subject(s)
Glypicans/immunology , Immunotherapy, Adoptive , Neuroblastoma/drug therapy , Receptors, Antigen, T-Cell/metabolism , Animals , Cell Line, Tumor , Glypicans/metabolism , Humans , Immunotherapy/methods , Neuroblastoma/pathology , Receptors, Antigen, T-Cell/immunology , Receptors, Chimeric Antigen/immunology , T-Lymphocytes/drug effects , T-Lymphocytes/immunology , Xenograft Model Antitumor Assays/methods
16.
Pediatr Hematol Oncol ; 39(5): 453-467, 2022 Aug.
Article in English | MEDLINE | ID: mdl-34918996

ABSTRACT

Chronic myeloid leukemia (CML) is effectively treated with long-term tyrosine kinase inhibitor (TKI) therapy, yet little is known about risks of prolonged TKI exposure in young patients, and long-term effect monitoring is not standardized. We surveyed North American pediatric oncologists (n = 119) to evaluate perceived risk of and surveillance practices for potential toxicities associated with prolonged TKI exposure in children and adolescents/young adults (AYAs) with CML. Survey domains included general and specific risk perceptions and surveillance practices for asymptomatic patients on chronic TKI therapy. We analyzed data descriptively and explored relationships between risk perceptions and surveillance. Risk perceptions varied among oncologists but were similar across six categories (thyroid, cardiac, vascular, metabolic, fertility, psychologic), with less than one-third rating each risk as moderate or high in pediatric and AYA patients. More oncologists perceived moderate or high risk of growth abnormalities in children (62% pediatric, 14% AYA) and financial toxicity in all patients (60% pediatric, 64% AYA). A greater proportion of oncologists with moderate or high perceived risk of thyroid abnormalities reported testing thyroid function compared to those with lower perceived risk; patterns for metabolic risk/lipid tests and cardiac risk/tests were similar. In summary, we found that pediatric oncologists had variable risk perceptions and surveillance practices for potential toxicities associated with prolonged TKI exposure. Standardizing surveillance would help quantify risks and refine recommendations.Supplemental data for this article is available online at https://doi.org/10.1080/08880018.2021.2017085 .


Subject(s)
Graft vs Host Disease , Leukemia, Myelogenous, Chronic, BCR-ABL Positive , Physicians , Adolescent , Child , Humans , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , Protein Kinase Inhibitors/adverse effects , Young Adult
17.
Cancers (Basel) ; 13(24)2021 Dec 14.
Article in English | MEDLINE | ID: mdl-34944883

ABSTRACT

Children with chronic myeloid leukemia (CML) tend to present with higher white blood counts and larger spleens than adults with CML, suggesting that the biology of pediatric and adult CML may differ. To investigate whether pediatric and adult CML have unique molecular characteristics, we studied the transcriptomic signature of pediatric and adult CML CD34+ cells and healthy pediatric and adult CD34+ control cells. Using high-throughput RNA sequencing, we found 567 genes (207 up- and 360 downregulated) differentially expressed in pediatric CML CD34+ cells compared to pediatric healthy CD34+ cells. Directly comparing pediatric and adult CML CD34+ cells, 398 genes (258 up- and 140 downregulated), including many in the Rho pathway, were differentially expressed in pediatric CML CD34+ cells. Using RT-qPCR to verify differentially expressed genes, VAV2 and ARHGAP27 were significantly upregulated in adult CML CD34+ cells compared to pediatric CML CD34+ cells. NCF1, CYBB, and S100A8 were upregulated in adult CML CD34+ cells but not in pediatric CML CD34+ cells, compared to healthy controls. In contrast, DLC1 was significantly upregulated in pediatric CML CD34+ cells but not in adult CML CD34+ cells, compared to healthy controls. These results demonstrate unique molecular characteristics of pediatric CML, such as dysregulation of the Rho pathway, which may contribute to clinical differences between pediatric and adult patients.

18.
Genes (Basel) ; 12(10)2021 10 19.
Article in English | MEDLINE | ID: mdl-34681039

ABSTRACT

Blood cell development is regulated through intrinsic gene regulation and local factors including the microenvironment and cytokines. The differentiation of hematopoietic stem and progenitor cells (HSPCs) into mature erythrocytes is dependent on these cytokines binding to and stimulating their cognate receptors and the signaling cascades they initiate. Many of these pathways include kinases that can diversify signals by phosphorylating multiple substrates and amplify signals by phosphorylating multiple copies of each substrate. Indeed, synthesis of many of these cytokines is regulated by a number of signaling pathways including phosphoinositide 3-kinase (PI3K)-, extracellular signal related kinases (ERK)-, and p38 kinase-dependent pathways. Therefore, kinases act both upstream and downstream of the erythropoiesis-regulating cytokines. While many of the cytokines are well characterized, the nuanced members of the network of kinases responsible for appropriate induction of, and response to, these cytokines remains poorly defined. Here, we will examine the kinase signaling cascades required for erythropoiesis and emphasize the importance, complexity, enormous amount remaining to be characterized, and therapeutic potential that will accompany our comprehensive understanding of the erythroid kinome in both healthy and diseased states.


Subject(s)
Cell Differentiation/genetics , Erythrocytes/cytology , Erythropoiesis/genetics , Extracellular Signal-Regulated MAP Kinases/genetics , Gene Expression Regulation/genetics , Humans , MAP Kinase Signaling System/genetics , Phosphatidylinositol 3-Kinases/genetics , Phosphorylation/genetics
19.
J Biol Chem ; 297(3): 100988, 2021 09.
Article in English | MEDLINE | ID: mdl-34298020

ABSTRACT

Nemo-like kinase (NLK) is a member of the mitogen-activated protein kinase family of kinases and shares a highly conserved kinase domain with other mitogen-activated protein kinase family members. The activation of NLK contributes to the pathogenesis of Diamond-Blackfan anemia (DBA), reducing c-myb expression and mechanistic target of rapamycin activity, and is therefore a potential therapeutic target. Unlike other anemias, the hematopoietic effects of DBA are largely restricted to the erythroid lineage. Mutations in ribosomal genes induce ribosomal insufficiency and reduced protein translation, dramatically impacting early erythropoiesis in the bone marrow of patients with DBA. We sought to identify compounds that suppress NLK and increases erythropoiesis in ribosomal insufficiency. We report that the active component of ginseng, ginsenoside Rb1, suppresses NLK expression and improves erythropoiesis in in vitro models of DBA. Ginsenoside Rb1-mediated suppression of NLK occurs through the upregulation of miR-208, which binds to the 3'-UTR of NLK mRNA and targets it for degradation. We also compare ginsenoside Rb1-mediated upregulation of miR-208 with metformin-mediated upregulation of miR-26. We conclude that targeting NLK expression through miRNA binding of the unique 3'-UTR is a viable alternative to the challenges of developing small-molecule inhibitors to target the highly conserved kinase domain of this specific kinase.


Subject(s)
Anemia, Diamond-Blackfan/pathology , Erythropoiesis/drug effects , Ginsenosides/pharmacology , Panax/chemistry , Protein Serine-Threonine Kinases/drug effects , 3' Untranslated Regions , Animals , Humans
20.
Biomedicines ; 9(7)2021 Jun 24.
Article in English | MEDLINE | ID: mdl-34202904

ABSTRACT

Ribosomal S6 Kinases (RSKs) are a group of serine/threonine kinases that function downstream of the Ras/Raf/MEK/ERK signaling pathway. Four RSK isoforms are directly activated by ERK1/2 in response to extracellular stimuli including growth factors, hormones, and chemokines. RSKs phosphorylate many cytosolic and nuclear targets resulting in the regulation of diverse cellular processes such as cell proliferation, survival, and motility. In hematological malignancies such as acute myeloid leukemia (AML), RSK isoforms are highly expressed and aberrantly activated resulting in poor outcomes and resistance to chemotherapy. Therefore, understanding RSK function in leukemia could lead to promising therapeutic strategies. This review summarizes the current information on human RSK isoforms and discusses their potential roles in the pathogenesis of AML and mechanism of pharmacological inhibitors.

SELECTION OF CITATIONS
SEARCH DETAIL
...